موجرالوال

Roll No	o. of Ca	ndidate:		n 410 (IV)	Group: I	Paper: I	
Chemi	stry (N	• •	ERMEDIATE PART- OBJECTIVE	.1) 319-(1v)	Group. 1	Marks: 17	
Time:	20 Min		Code: 6487		as which you	think is correct, fill	
Note:	that circ	You have four choices for each objective type question as A, B, C and D. The choice which you think to or more that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question. Attempt as many questions as given in objective type question paper circles will result in zero mark in that question.					
1.	1. 1	n zero order reaction the A) temperature of reactio C) concentration of produ	n ucts	B) concentration D) none of these	of reactants		
			B) 41.84 J	C) 4.184 J	D) 4	11 8.4 J	
		Stronger the oxidizing a A) oxidation potential		C) redox potentia		E.M.F of cell r:	
	4.	Which of the halogen ha	alides has the highest p				
29	5.	A solution of glucose is	B) 1.8 QIII	0, = 0			
	6.	In order to raise the boi A) between 760 torr an C) 765 torr	id 1200 ton	D) any value of		60 torr	
	7.	Which of the following	B) I HI I'a	C) 1.12.0		BF ₃	
	8.	A) NH ₃ If absolute temperature	of a gas is doubled an	d pressure is red	uced to one	half, the volume	
8		of a gas will: A) remain unchanged	B) increase four times	C) reduced to $\frac{1}{4}$	5) be doubled	
	9.	The pH of 10 ⁻³ mol.di	B) 2.7	C) 2.0	D) 1.5	
•	10.	The volume of a gas w A) 546 °C	B) 200 C	hat it is at 0°C: C) 546 K	D) 273 K	
	11.	Bohr's model of atom A) Plancks quantum th C) Heisenberg's uncer	eory tainty principle	B) dual nature D) all of the ab	oove		
	12.	A) law of mass action C) distribution law	an equilibrium process	B) the amount D) the amount	CA DOLLAND	sed	
	13.	A) nature of electrode	nihe	B) nature of re D) all of the al	bove	A 6 O	
	14.	27 gms of Al will re A) 8.0 g of oxygen	cact completely with h B) 16.0 g of oxygen	ow much mass o C) 32.0 g of o	O_2 to propagate O_2	oduce Ac2O3 O) 24.0 g of oxygen	
	15.		H ₂ O is: B) 18	C) 55.5	ſ	O) 6	
	16.	C 1	e of electrons is: B) 0.55 mg	C) 0.184 mg	1.	O) 1.673 mg	
	17.	When water freezes a	at 0°C its density decice ent in the structure of ice	B) change of	bond length f bond angle	S	
					21	19-(IV)-319-33000	
		6	714-P1-	11-19			

Chemistry (New Scheme) (INTERMEDIATE PART-I) 319 Group: I Paper: I Time: 2:40 Hours SUBJECTIVE Marks: 68 Note: Section I is compulsory. Attempt any THREE (3) questions from Section II.

(SECTION - I)

2. Write short answers to any EIGHT questions.

i. Why most of the elements have fractional atomic mass?

- ii. Differentiate between "Molecular Formula" and "Empirical Formula".
- iii. Why 80 g of glucose and 342 g of suscrose have same number of molecules but different number of atoms?
- iv. Write down four properties of best solvent choosen for crystallization.
- v. Differentiate between adsorption and partition chromatography.
- vi. Define critical temperature and critical pressure.
- vii. Calculate the S.I units of 'R'.
- viii. Define plasma. How it is formed?
- ix. Why gases show Non-Ideal behavior at low temperature and high pressure?
- x. Write two differences between Ideal and Non-Ideal solutions.
- xi. Define Heat of solution. Give example.
- xii. Why aqueous solution of CH3COONa is basic?

3. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- Define vapour pressure. Name the factors which affect vapour pressure.
- ii. What are dipole-dipole forces. Name the properties which are affected by these forces.
- iii. Define Anisotropy and Allotropy.
- iv. Boiling point of water is high as compared to boiling point of ether. Why?
- v. State Moseley's Law. Give its two importances.
- vi. Justify that the distance gaps between different orbits go on increasing from the lower to the higher orbits.
- vii. Why are positive rays called canal rays?
- viii. Draw shapes of 'S' and 'P' orbitals.
- ix. Define common ion effect giving an example.
- x. State law of Mass Action.
- xi. Define order of reaction. Give an example of pseudo first order reaction.
- xii. Write two properties of enzyme catalysis.

4. Write short answers to any SIX questions.

 $(2\times 6=12)$

- Define octet rule. Give two examples.
- ii. Atomic Radii increase in group and decrease in period, explain it.
- iii. Cationic radius is smaller than parent atom, give reason.
- iv. How electronegativity is used to find nature of chemical bond.
- v. Define exothermic reaction. Give two examples.
- vi. Define Spontaneous process. Give two examples.
- vii. Find oxidation number of "Mn in KMnO4"
- viii. Explain electrolysis of fused PbCl2.
- ix. Write the function of salt bridge in Galvanic cell.

GUJ-11-G1-19

(Turn Over)

			, ,		
Chemi	of Canastry (New	w Scheme) (IN	TERMEDIATE PAI OBJECTI	RT-I) 319 – (IV) Gro VE	up: II Paper: I Marks: 17
Time:	~^ **	4 nm	Code: 64	90 .	
Note:		· · · · · · · · · · · · · · · · · · ·	objective type question as	A, B, C and D. The choice	which you think is correct, fill utting or filling two or more objective type question paper
	circles Wit	It result ill Zero men k.	ik man 1		
	and leave	other blank.	1 100//r The s	olume in which 1 g mo	le of
1.	1. A.	solution of glucose	as 10% W/V. The	Olania III	
	it	is dissolved will be	B) 1.8 dm ³	C) 200 cm ³	D) 900 cm
	2 T	he molar volume of	f CO ₂ is maximum a B) 127 °C and 1 at	m C) 0 °C and 2 atm are subjected to strong e C) photo electric eff	D) 273 °C and 2 atm
	3. S	nlitting of spectral	lines when the atoms	C) photo electric eff	ect D) Compton effect
	J. U	A) zee-man effect	B) stark effect	C) photo electric of	•••
	4 1	folarity of pure wa	ter is:	W 55.5	D) 6.0
		A) 1.0	B) 18.0	C) 55.5	2,
	5. C	orbitals having sam	e energy are called: B) valence orbitals	C) degenerate orbit	als D) d-orbitals
		The volume occumit	ed by $1.4 \mathrm{g}$ of N_2 at	S.T.P is:	D) 112 cm ³
		A) 2.24 dm ³	B) 22.4 diii		
	7. (Calorie is equivaler	B) 41.84 J	C) 4.184 J	D) 418.4 J
		A) 0.418 J	D) 41.04 J	ess and is controlled by	:,
	8.	Solvent extraction	is an equilibrium proc	B) distribution law	a
		A) law of mass acti	on	D) the amount of s	solute
		C) amount of solver	nt used	- /	
		A) 1 008 mg	ole of electrons is: B) 0.55 mg	C) 0.184 mg	D) 1.673 mg
	10.	In zero order reacti	ion, the rate is indeper	B) concentration	of reactants
	355	A) temperature of i	reaction	D) none of these	
		(C) concentration of	t products	5.787	
	11.	A) CaF ₂	wing is a pseudo solid B) glass	C) Haes	D) all of these
	12.		zing agent, greater is ntial B) reduction pot		D) E.M.F of cell
		TIN :- h of the follo	wing species has unp	paired electrons in the ar	iti-bonding
	13.	molecular orbitals	2. 2		
			B) N ₂ ²⁻	C) B ₂	D) F ₂
		A) O_2^{2+}	B) N ₂	9	2 **11
	• •	Descripe remainit	ne constant, at which	temperature, the volume	of gas will
	14.	become twice of A) 546 °C	B) 200 °C	C) 546 K	D) 273 K
	15.	lonic solids are c A) low melting p C) good sonductions	oints ivity in solid state	B) high vapour D) solubility in	pressures polar solvents
	16.	Which of the fol	lowing molecules has B) CHCl3	zero dipole moment: Ĉ) H ₂ O	D) BF ₃
	17.	The pH of 10 ⁻³ A) 3.0	mole.dm ⁻³ of an aquo B) 2.7	cous solution of H ₂ SO ₄ C) 2.0	is: D) 1.5
		messee any constr	46		220-(TV)-319-310

Cry-P11-11-19

			(SECTION - II)	
	5.	(a) (b)	Write a note on Limiting reactant. Explain it giving at least two examples. Write four important properties of Metallic solids.	4
			170 Control 20 Control	4
	6.	(a)	250 cm ³ of hydrogen is cooled from 127 °C to -27 °C by maintaining the pressure constant. Calculate the new volume of gas at low temperature.	4
		(b)	Write down any four properties of positive rays.	4
	7.	(a)	Explain postulates of molecular orbital theory.	4
		(b)	Derive the relationship between ΔH and ΔE , where H stands for enthalpy and E stands for internal energy. Which are two conditions when ΔH and ΔE becomes equal.	4
8.	8.	(a)	Ca (OH) ₂ is a sparingly soluble compound. Its solubility product is 6.5×10^{-6} . Calculate the solubility of Ca(OH) ₂ .	4
		(b)	Describe any four physical methods for the determination of the rate of a chemical reaction.	4
	9.	(a)	Give graphical explanation for Elevation of boiling point of a solution.	4
		(b)	Explain four Industrial applications of Electrolysis.	4
			219-319-33000	
•	1			

G1UJ-11-G1-19