Time:20 Minutes

Inter - (Part-I)-A-2022

to be filled in by the candidate

(For All Sessions) Group - I

Paper Code

# Chemistry(Objective Type)

Rup-91-22

Marks:17

NOTE: Write answers to the questions on objective answer sheet provided. Four possible answers A, B, C & D to each question are given. Which answer you consider correct, fill the corresponding circle A, B, C or D given in front of each question with marker or pen ink on the answer sheet provided.

| 1 1  | A      | - p. o . idea.                         |                       |                                                             |             | 100                                   |         |                |          |
|------|--------|----------------------------------------|-----------------------|-------------------------------------------------------------|-------------|---------------------------------------|---------|----------------|----------|
| 1.1. |        | orphous solids:                        |                       |                                                             | (m)         |                                       | -       |                |          |
|      |        | Have shape melting point               | c                     |                                                             | (B)         | Under go clean cleavage               |         |                |          |
| 2.   |        | Have perfect arrangement of            |                       |                                                             | (D)         | Have small region of orde             | rly arr | angement o     | fatom    |
| ۷.   |        | value of charge on electron is         | (D)                   | 1 600 1019 0 1 1                                            | (a)         |                                       |         | 4              | -10      |
| 2    |        | 2.602x10 <sup>-19</sup> Coulombs       |                       | 1.602x10 <sup>19</sup> Coulombs                             | (C)         | 1.6023x10 <sup>-19</sup> Coulombs     | (D)     | 1.602x10       | Kg       |
| 3.   |        | tum number value for 2S orbi           |                       |                                                             | (A) X       |                                       |         |                |          |
|      |        | n=2, l=1                               | (B)                   | n = 1, l = 2                                                | (Ċ)         | n=1, l=0                              | (D)     | n=2,           | l = o    |
| 4.   | Whic   | h of the following species has         | unpair                | ed electrons in the antib                                   | onding bor  | nding molecular orbitals?             |         |                |          |
|      | (A)    | $O_2^{-2}$                             | (B)                   | $N_2^{2-}$                                                  | (C)         | B <sub>2</sub>                        | (D)     | F <sub>2</sub> |          |
| 5.   | Geo    | metry of H2Q on the basis of           | VSEPR                 | theory.                                                     |             |                                       |         | - 2            |          |
|      |        | Linear                                 |                       | Trigonal planer                                             | (C)         | Tetrahedral                           | (D)     | Bent           |          |
| 6.   | The    | net heat change in a chemical          | l reactio             | n is same, whether it is l                                  | orought abo | out in two or different ways          | in one  | or several s   | tens. It |
|      | kno    | wn as.                                 |                       |                                                             |             | ,                                     |         |                | P        |
|      | (A)    | Henry law                              |                       |                                                             | (B)         | Joul's law                            |         |                |          |
|      |        | Hess's law                             |                       |                                                             | (D)         | Law of conservation of en             | ergy    |                |          |
| 7.   |        | which system, does the equilib         |                       |                                                             |             |                                       |         |                |          |
|      | (A)    | $N_2 + 3H_2 \rightleftharpoons 2NH_3$  | (B)                   | $H_2 + I_2 \rightleftharpoons 2HI$                          | (C)         | $2No_2 \rightleftharpoons N_2O_4$     | (D)     | None of th     | iese     |
| 8.   | Coll   | igative properties are the prop        | erties o              | f:                                                          | •           |                                       |         |                |          |
|      | (A)    | Dil solution which behave as           | nearly                | ideal solutions                                             | (B)         | Concentrated solution wh              | ich bel | nave as near   | ly non-  |
|      |        |                                        | neurry                | racar solutions                                             |             | ideal solution                        |         |                |          |
| _    |        | Both (A) and (B)                       | A                     |                                                             | (D)         | None of there                         |         |                |          |
| 9.   |        | salt bridge is not used betwe          |                       |                                                             |             |                                       |         |                |          |
|      | (A)    |                                        |                       | Decrease slowly                                             | (C)         | Does not change                       | (D)     | Drops to Z     | ero      |
| 10.  | If the | e equation at reaction                 | 1+B-                  | Product                                                     |             |                                       |         |                |          |
|      |        | rat                                    | te = K                | $[A]^2[B]$ A is present                                     | ın ıarge ex | cess, then order of reaction          | 1S.     |                |          |
|      |        |                                        |                       |                                                             |             | ,                                     |         |                |          |
|      | (A)    | 1                                      | (B)                   | 2                                                           | (C)         | 3                                     | (D)     | 4              |          |
| 11.  |        | nole of So <sub>2</sub> contain:       |                       |                                                             |             |                                       |         |                |          |
|      | (A)    | 6.02x10 <sup>23</sup> atoms of oxygen  |                       |                                                             | (B)         | 1.81x10 <sup>23</sup> molecule of So- | ,       |                |          |
|      | (C)    | 6.02x10 <sup>23</sup> atoms of Sulphur |                       |                                                             | (D)         | 4 gram atoms of So <sub>2</sub>       |         |                |          |
| 12.  |        | niting reactant is one which is:       | :                     |                                                             | ,           | gram aroms or 502                     |         |                |          |
|      | 1. 3   | Taken is small amount in grar          |                       | nnared to other reactant                                    | · . (B)     | Taken in lesser amount in             | zohime  | as compan      | ed to    |
|      |        | <b>5</b>                               |                       | nparou vo omer rousiani                                     |             | other reactant.                       | Olum    | o as compar    | ou to    |
|      | (C)    | Give the maximum amount of             | fproduc               | :t                                                          | (D)         | Give minimum amount of                | oroduc  | t              |          |
| 13.  | A filt | ration process could be very to        | ime con               | suming if it were not aid                                   | ded by suct | tion which is developed:              | ,       | · ·            |          |
|      | (A)    | If the paper covers the funnel         | up to th              | e circumference                                             |             | If the paper has got small s          | ized no | ores in it     |          |
|      | (C)    | If the stem at the funnel in larg      | ge so tha             | at it dips into the filtrate                                | (D)         | If the paper fits tightly             |         |                |          |
| 14.  |        | ent extraction is an equilibriun       | n proces              | ss and is controlled by.                                    |             |                                       |         |                |          |
|      |        | Law of Mass action                     |                       | *                                                           | (B)         | Amount of solvent used                |         |                |          |
|      |        | Partition law                          |                       |                                                             |             | Amount of solute                      |         |                |          |
| 15.  | Pressi | ure remain constant, at which          |                       | iture the volume of gas v                                   | will becom  | e twice of what it is at 0°C.         |         |                |          |
|      | (A) 5  | 2000 000                               |                       | 00°C                                                        | (C)         | 546 K                                 | (D)     | 273 K          |          |
| 16.  |        | rder of rate of diffusion of gas       | es NH <sub>3</sub>    | , So <sub>2</sub> , Cl <sub>2</sub> and Co <sub>2</sub> is: |             |                                       |         |                |          |
|      |        | $NH_3 > So_2 > Cl_2 > Co_2$            |                       |                                                             | (B)         | $NH_3 > Co_2 > So_2 > Cl_2$           |         |                |          |
|      | (C)    | $Cl_2 > So_2 > Co_2 > NH_3$            |                       |                                                             |             | $NH_3 > Co_2 > Cl_2 > So_2$           |         |                |          |
| 17.  |        | er to raise the building point a       | ıt H <sub>2</sub> O u | p to 110°C, the external                                    | pressure s  | hould be.                             |         |                |          |
|      |        | Between 760 torr and 1200 tor          |                       |                                                             |             | Between 200 torr and 760 to           | orr     |                |          |
|      | (C) 5  | 76 torr                                |                       |                                                             |             | At any pressure                       |         | ×              |          |
|      |        | (4)                                    |                       |                                                             |             |                                       |         |                |          |

833-11-A-★★-16290

(For All Sessions)

## Chemistry (Essay Type)

# Group - I

Marks:68

 $2 \times 8 = 16$ 

Time: 2:40 Hours

- Write short answers of any eight parts from the following. 2-
- How molecular ions are formed? Give example.
- What is percentage yield? Write its formula.
- Define solvent extraction.
- Convert 30° centigrade into Fahrenheit scale. vii.
- Write down any two applications of plasma. ix.
- What are the optimum conditions of temperature and pressure to get maximum yield of ammonia?  $N_2 + 3H_2 \rightleftharpoons 2NH_3 + 92.46Kj$
- Write short answers of any eight parts from the following.
- What do you mean by Habit of a crystal? Give an example. i.
- Boiling points of halogens increase down the group. Give the iii.
- What do you mean by Line Spectrum? V.
- Why is the e/m value for positive rays obtained from hydrogen gas vii. 1836 times less than that of cathode rays?
- What are conjugate solutions? Give an example. ix.
- What is auto-catalysis? Give an example. xi.
- Write short answers of any six parts from the following.
- Bond distance is the compromised distance between two atoms. i.
- What are bonding and antibonding molecular orbitals? Give iii. examples.
- Define a spontaneous reaction.
- Burning of Candle is a spontaneous process. Justify it. vii.
- Write anodic reaction in alkaline battery.

- Define Mole and Avogadro's Number. ii.
- Write down two phases of chromatography. iv.
- Why fluted filter paper in more useful than ordinary vi. filter paper for filtration?
- What is Joule Thomson effect? viii.
- Calculate PH of 10<sup>-4</sup> mole dm<sup>-3</sup> of Hcl solution. X.
- State Le-chatelier's principle. xii.

 $2 \times 8 = 16$ 

- Define molar heat of vaporization and Molar heat of ii. sublimation.
- Ide floats on water. Give the reason. iv.
- What is n+l rule? Give an example. vi.
- State Heisen berg's Uncertainty Principle. Also viii. write its mathematical form.
- What are hydrates? How are they formed? X.
- A catalyst is specific in its action. Give one example xii. to prove it.

 $2 \times 6 = 12$ 

- $\pi$  bonds are more diffused than sigma bonds. Justify ii.
- Define non polar covalent bond. Give examples. iv.
- Why the temperature of the system changes during vi. exothermic and endothermic reactions.
- A salt bridge maintains the electrical neutrality in viii. the cell. Give reasons.

#### Section - II

 $8 \times 3 = 24$ 

NOTE: Answer any three questions from the following.

- What is the difference between actual yield and theoretical yield? Why actual yield is less than the theoretical yield.
- 250 Cm<sup>3</sup> of hydrogen is cooled from 127°C to -27° by 6.(a)maintaining the pressure constant. Calculate the new volume of the gas at this low temperature.
- Explain structure of water and boron trifluoride by hybridization.
- How is the vapour pressure of a liquid measured using 8.(a)Manometric method?
- Explain Beckmann method to determine depression of 9.(a) Freezing point.

- What is spectrum? Explain Atomic Emission and 04+04 Atomic absorption spectrum.
- Define electrochemical series. Discuss calculation of the voltage of cell, giving one 04+04
- (b) Explain measurement of enthalpy of a reaction by 04+04 glass calorilmeter.
- The solubility of PbF<sub>2</sub> at 25°C is 0.64gdm<sup>-3</sup>. 04+04 Calculate Ksp of PbF2.
- How order of reaction can be measured by half 04+04 life method.

| ╼- | ~ |
|----|---|
| 24 | - |

Roll No.

to-be filled in by the candidate

Inter - (Part-I)-A-2022

Group - II

(For All Sessions)

Paper Code 6 4 8 4

# Chemistry (Objective Type)

Rup-62-22

Time: 20 Minutes

Marks: 17

NOTE: Write answers to the questions on objective answer sheet provided. Four possible answers A, B, C & D to each question are given. Which answer you consider correct, fill the corresponding circle A, B, C or D given in front of each question with marker or pen ink on the

| nswe | r sheet provided.                                                        |          | pe                                                      |
|------|--------------------------------------------------------------------------|----------|---------------------------------------------------------|
| .1.  | The volume occupied by 16g of O <sub>2</sub> at S.T.P is:                |          |                                                         |
|      | (A) $22.4  \text{dm}^3$                                                  | (B)      | 2.24 dm <sup>3</sup>                                    |
|      | (C) $11.2  \text{dm}^3$                                                  | (D)      | 1.12 dm <sup>3</sup>                                    |
| 2.   | According to VSEPR theory, the shape of SO <sub>3</sub> molecule is.     | ·        |                                                         |
|      | (A) Trigonal pyramidal (B) Bent or angular                               | (C)      | Triangular planer (D) Tetrahedral                       |
| 3.   | A filtration process could be very time consuming if were not aided by   | a gent   | le suction which is developed.                          |
| ٥.   | (A) If the paper covers the funnel up to its circumference               | (B)      | If the paper has got small sized pores in it            |
|      | (C) If the stem of the funnel is large so that it dips into the filtrate | (D)      | If the paper fits tightly                               |
| 4.   | When 6d orbital is complete, the entering electron goes into.            |          |                                                         |
|      | (A) 7s (B) 7p                                                            | (C)      | 7f (D) 7d                                               |
| 5.   | Which one of the following hydrocarbons has shortest C-C bond len        | gth?     |                                                         |
| ٥.   | (A) Ethyne (B) Ethene                                                    | (C)      | Ethane (D) Benzene                                      |
| 6.   | NH3 shows a maximum boiling point among the hydrides of Vth group        | eleme    | ents due to:                                            |
|      | (A) Enhanced electronegative character of nitrogen                       | (B)      | Pyramidal structure of NH <sub>3</sub>                  |
|      | (C) Lone - pairs of electrons present on nitrogen                        | (D)      | Very small size of nitrogen                             |
| 7.   | If the absolute temperature of a gas is doubled and the pressure is redu | ced to   | one half, the volume of the gas will.                   |
|      | (A) Remains unchanged                                                    | (B)      | Reduced to 1/4                                          |
|      | (C) Increases four times                                                 | (D)      | Be doubled                                              |
| 0    | Splitting of spectral lines when atoms are subjected to strong magnetic  |          |                                                         |
| 8.   | (A) Zeeman effect                                                        | (B)      | Stark effect                                            |
|      | (C) Photoelectric effect                                                 | (D)      | Compton effect                                          |
| 9.   | Gases deviate from ideal behaviour at high pressure. Which of the foll   | lowing   | is correct for non-ideality?                            |
| ٠.   | (A) At high pressure, the gas molecules move in one direction            | (B)      | At high pressure, the intermolecular attractions        |
|      | only                                                                     |          | becomes significant                                     |
|      | (C) At high pressure, the collisions between the gas molecules are       | (D)      | At high pressure, the volume of the gas become          |
|      | much increased                                                           |          | insignificant                                           |
| 10.  | Dipole - dipole forces are present among the.                            |          |                                                         |
| 10.  |                                                                          | (B)      | Molecules of CCl <sub>4</sub>                           |
|      | (A) Atoms of helium gas                                                  | (D)      | Molecules of HCl                                        |
|      | (C) Molecules of solid I <sub>2</sub>                                    | (2)      | 1/10/004/00 01 11 01                                    |
| 11.  | Which of the following statements is not correct about galvanic cell?    | (B)      | Anode is negatively charged                             |
|      | (A) Reduction occurs at cathode                                          | (D)      | Reduction occurs at anode                               |
|      | (C) Cathode is positively charged                                        | (D)      | Reduction occurs at anode                               |
| 12.  | Oxidation of nitric oxide with ozone has been shown to be:               | (B)      | D. J. C. t J                                            |
|      | (A) First order reaction                                                 |          | Pseudo first order reaction                             |
|      | (C) Second order reaction                                                | (D)      | Third order reaction                                    |
| 13.  | A solution of glucose is 10% W/v. The volume in which 1g mole of         |          | solved will be.                                         |
|      | (A) 900Cm <sup>3</sup>                                                   | (B)      | 200Cm <sup>3</sup>                                      |
|      | (C) 1.8dm <sup>3</sup>                                                   | (D)      | 1dm <sup>3</sup>                                        |
| 14.  | The aqueous solution of BiCl3 is cloudy. The cloudness of BiCl3 solu     | tion car | n be vanished by:                                       |
|      | (A) Addition of BiCl <sub>3</sub>                                        | (B)      | Addition of H <sub>2</sub> O                            |
|      | (C) Addition of HCl                                                      | (D)      | Addition of both BiCl <sub>3</sub> and H <sub>2</sub> O |
| 15.  | 22g of CO <sub>2</sub> sample has:                                       |          |                                                         |
|      | (1)                                                                      | (B)      | 1 mole of O atoms                                       |
|      | (A) $\frac{1}{2}$ mole of O atoms                                        | (B)      |                                                         |
|      | (C) 1.5 moles of O atoms                                                 | (D)      | 6.02x10 <sup>23</sup> molecules of CO <sub>2</sub>      |
| 16.  | Which one of the following maybe employed as drying agent in a desi      | ccator   |                                                         |
| - 01 | (A) P <sub>2</sub> O <sub>5</sub>                                        | (B)      | Animal charcoal                                         |
|      | (C) KMnO <sub>4</sub>                                                    | (D)      | NH₄Cl                                                   |
| 17   |                                                                          |          |                                                         |
| 17.  | (A) Products is more than that of reactants                              | (B)      | Reactants is more than that of products                 |
|      | (C) Both (A) and (B)                                                     | (D)      | Reactants and products are equal                        |
|      | \                                                                        |          |                                                         |



Roll No.\_\_\_\_\_ to be filled in by the candidate

(For All Sessions)

Group - II

### Ruf-42-23 Section - I

Marks:68

 $2 \times 8 = 16$ 

| Chemistry | (Essay Type) |
|-----------|--------------|
|-----------|--------------|

Time: 2:40 Hours

- 2- Write short answers of any eight parts from the following.
- i. Write the formulas to determine the percentage of carbon and hydrogen in combustion analysis.
- iii. Define gram molecule by giving two examples.
- v. Differentiate between adsorption and partition chromatography.
- vii. Define Avogadro's Law and give two examples.
- ix. Why the sum of mole fractions is always equal to unity?
- xi. Write the formula to calculate the percentage ionization of weak
- 3- Write short answers of any eight parts from the following.
- i. In a very cold winter fish in the garden ponds owe their lives due to H-bonding. Justify.
- iii. Cleavage of the crystals is itself anisotropic behaviour. Justify.
- v. Differentiate between frequency and wave number.
- vii. What is Zeeman effect?
- ix. Differentiate between Molarity and Molality.
- xi. The radio active decay is always first order reaction. Give reason.
- 4- Write short answers of any six parts from the following.
- i. Name the factors influencing the electron affinity.
- iii. Explain bond order for Helium and why it does not exist as He<sub>2</sub> molecule?
- v. Define internal energy and point out; is it a state function or not?
- vii. Define state function, write names of two such functions.
- ix. Impure Cu can be purified by electrolytic process, justify?

- ii. How the molecular and empirical formulas are related to each other?
- iv. Define sublimation and give examples.
- vi. Define qualitative and quantitative analysis.
- viii. One dm<sup>3</sup> of H<sub>2</sub> and O<sub>2</sub> have different masses but occupy same volumes. Give reason
- x. Define law of mass action and give the equilibrium constant expression.
- xii. Define Lowry Bronsted acid base concept.

 $2 \times 8 = 16$ 

- ii. Water and ethanol can mix easily and in all proportions. Justify.
- iv. London dispersion forces are weaker than dipole dipole forces. Why?
- vi. Write two importance of Mosely's law.
- viii. Write down any two postulates of plank's quantum theory.
- x. What is fractional crystalization?
- xii. Differentiate between homogeneous and Heterogeneous catalysis.

 $2 \times 6 = 12$ 

- ii. Define orbital hybridization and name its types.
- iv. Ionization energy decreases down the group. Why?
- What do you mean by heat of solution; give a suitable example.
- viii. What do you mean by Standard Hydrogen Electrode (SHE).

#### Section - II

 $8 \times 3 = 24$ 

04+04

NOTE: Answer any three questions from the following.

- 5.(a) What is limiting reactant, give examples and how it is identified.
- 6.(a) Describe the charging and discharging of Lead Accumulator.
- 7.(a) Discuss Geometry of ethene  $\begin{pmatrix} C & H \\ 2 & 4 \end{pmatrix}$  according to  $Sp^2$  hybridization.
- 8.(a) What is hydrogen bonding. Give its three applications.
- 9.(a) Explain graphically depression of freezing point of a solvent by solute. Also write down its mathematical form.

- (b) Explain measurement of e/m value of electron. 04+04
- (b) Calculate the mass of 1 dm³ of NH<sub>3</sub> gas at 30°C and 1000mm Hg pressure, considering that NH<sub>3</sub> is 04+04 behaving ideally.
- (b) How can you measure enthalpy of reaction by glass calorimeter. 04+04
- (b) The solubility of CaF<sub>2</sub> in water at 25°C is found to be 2.05 x 10<sup>-4</sup> mol dm<sup>-3</sup>. What is value of Ksp at this temperature?
- (b) Clearly differentiate between Homogeneous and Heterogeneous catalysis. Give two examples of each.