Roll N	Roll No. of Candidate:								
CHEN	IISTRY	Intermediate Part-I, Cla	ass 11 th (1 st A 323- IV)	Paper: I Group - I					
Time:	20 Minutes	OBJECTIVE	Code: 6487 (10) -	1/-1-23 Marks: 17					
Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two circles will result in zero mark in that question.									
1. 1-	The molar volum	ne of CO ₂ is maximum at	1						
	(A) STP	(B) 127°C and 1 atr	m/(C) 0° C' and 2 atm	(D) 273°C and 2 atm					
2 -	Molarity of pure								
	(A) 1	(B) 18	(C) 55.5	(D) 6					
3 -	The rate of reacti	on							
	(A) increases as	the reaction proceeds	(B) decreases as the re-	action proceeds					
	(C) remains san	ne as the reaction proceeds	(D) may increase or decrease as reaction proceeds						
4 -	Water boils at 98	°C at external pressure of							
	(A) 700 torr	(B) 765 torr	(C) 800 torr	(D) 900 torr					
5 -	Stronger is the ox	kidizing agent, greater is the							
	(A) oxidation po		(B) reduction potentia	1					
	(C) redox potent	. /	(D) emf of the cell						
6 -	1.50	conversion of SO ₂ /into SO ₃ in							
	(A) MgO	(B) $Al_2 Ø_3$	(C) SiO ₂	(D) V_2O_5					
7 -		values for 2P orbital are							
	(A) $n=2$, $\ell=1$	(B) $n=1$, $\ell=2$	$(\mathbb{C}) n=1, \ell=0$	(D) $n=2, \ell=0$					
8 -		at energy of a chemical react	_						
	(A) enthalpy cha		(B)\heat of sublimation						
•	(C) bond energy		(D) internal energy change						
9 -		or of Fluorine in OF ₂ is							
10	(A) -1	(B) -2	(C) +2	(D) $+1$					
10 -	and the same of th	1 ~	(0) :	(D) -1					
11 -	(A) porcelain Mass of one mole	(B) silver	(C) iron	(D) glass					
11 -	(A) 1.008 mg	(B) 0.55 mg	(C) 0.184 mg	(D) 1 (72					
12		are of Oxygen in air is	(C) 0.184 mg	(D) 1.673 mg					
12 -	(A) 116 torr	(B) 159 torr	(C) 180 torr	(D) 190 torr					
13 -	Calorie is equival		(C) 100 ton	(D) 170 toll					
	(A) 0.4184J	(B) 41.84J	(C) 4.184J	(D) 418.4J					
14 -		oles/dm ³ of an aquous solution		(2) 110111					
	(A) 3.0	(B) 2.7	(C) 2.0	(D) 1.5					
15 -	` '	onds in Nitrogen molecule is	2						
	(A) one Sigma a	_	(B) One Sigma and Two Pi						
	(C) Three Sigma	only	(D) Two Sigma one Pi						
16 -	Ionic solids are c	haracterized by							
	(A) low melting	points	(B) good conductivity in solid state						
	(C) high vapour		(D) solubility in polar	solvents					
17 -									
	(A) 2	(B) 3	(C) 4	(D) 5					
			G 2:	17-(IV)-1 st A 323-36000					

Intermediate Part-I, Class 11th (1stA 323) Paper: I CHEMISTRY **SUBJECTIVE** Time: 2:40 Hours

101-11-1-23

Group - I Marks: 68

 $(2 \times 8 = 16)$

Note: Section-I is compulsory. Attempt any THREE (3) questions from Section-II.

SECTION-I

2. Write short answers to any EIGHT questions.

i - Calculate the moles of Cl atoms in 0.822 g of C₂H₄Cl₂.

- ii What is the difference between gram atom and gram ion?
- iii No individual neon atom has a mass of 20.18 amu. Why?
- iv How does the respiration process involve Dalton's law of partial pressures?
- v Give the quantitative definition of Charles's law.
- vi Where is plasma found?
- vii What is Moseley's law? Give its significance.
- viii Write down the electronic configuration of 29Cu and 19K.
- ix The velocities of electrons in higher orbits are less than those in lower orbits of hydrogen atom. Give the reason.
- x Define standard enthalpy of combustion. Give an example.
- xi What is meant by state function? Give two examples.
- xii Define exothermic reaction. Give an example.

3. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- i Define water of crystallization. Give example.
- ii How do you justify that the boiling point of one molal urea solution is 100.52°C but the boiling point of two molal urea solution is less than 101.04°C?
- iii Give two statements of Raoults law.
- iv Differentiate between fast step and the rate determining step.
- v What are enzymes? Give an example.
- vi The reaction happens due to collisions among the molecules but all the collisions are not fruitful.
- vii How does a Gooch crucible increases the rate of filtration?
- viii Give the main characteristics of the solvent used for crystallization.
- ix What is ether extraction?
- x Define polymorphism. Give example.
- xi Hydrogen bonding is present in chloroform and adetone. Justify it.
- xii How liquid crystals can act as temperature sensors?

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- i Atomic radius decreases from left to right in a period, justify.
- ii Define electron affinity, give one example.
- iii How the criteria of electronegativity helps us to understand the nature of bond?
- iv What is buffer capacity?
- v Value of pKa and pKb are related to strength of acid and bases. Justify it.
- vi Define solubility product with an example.
- vii Differentiate between electrolytic and galvanic cell.
- viii What is electrolysis? Give an example.
- ix How anodized aluminium is prepared in an electrolytic cell?

(Turn Over)

All N	No. of Candidate:								
HEMISTRY		Intermediate Part-I, (Paper: I Group - II						
	20 Minutes	OBJECTIVI	1/11/////	2-23 Marks: 17					
1	fill that circle in front	es for each objective type que of that question number. Use zero mark in that question.	estion as A, B, C and D. The choic e marker or pen to fill the circles. C	e which you think is correct,					
	(A) temperature (C) concentration		(B) concentration of a (D) none of these	reactants (D) 1.5					
3 -	(A) Cu will be of (C) Cu and Fe b	ooth dissolve	(B) Fe is precipitated	SO ₄ (B) Fe is precipitated out (D) no reaction takes place					
4	- Calori is equal to (A) 0.4184 J	о (В) 41.84 J	(C) 4.184 J	(D) 418.4 J					
5	(A) +3	6. of Nitrogen in HNO₃ is (B) −3	(C) -5	(D) +5					
6	(A) enthalpy ch(C) bond energy	The change in heat energy of a chemical reaction at constant temperature and pressure is called (A) enthalpy change (B) heat of sublimation (C) bond energy (D) internal energy change							
7	(A) equal to that(C) more than the	An aqueous solution of ethanol in water may have vapour pressure (A) equal to that of water (B) equal to that of ethanol (C) more than that of water (D) less than that of water							
8	(A) high pressu(C) low pressur	Feeling uncomfortable breathing in unpressurized cabin is due to (A) high pressure of CO ₂ (B) low pressure of CO ₂ (C) low pressure of O ₂ (D) high pressure of O ₂							
9	(A) 14	of pure water at 25° C is (B) 7	(C) 1×10 ⁻¹⁴	(D) 1×10 ¹⁴					
10	is at 0° C (A) 546° C	(B) 200° C	perature the volume of a gas wi (C) 546 K	(D) 273 K					
11			ed electrons in the antibonding	molecular orbitals?					
	(A) O_2^{2+}	(B) N_2^{2-}	(C) B	(D) F_2					
	(A) is cooled v(B) is cooled at(C) is evaporate(D) is mixed w	During the process of crystallization the hot saturated solution (A) is cooled very slowly to get large size crystals (B) is cooled at a moderate rate to get medium size crystals (C) is evaporated to get the crystals of the product (D) is mixed with immisible to get the pure crystals of the product							
13	(A) 7 f	d is complete, the entering (B) 7 p	(C) 7 s	(D) 7 d					
	(A) 8 g of Oxy	react how much mass of Ogen (B) 16 g of Oxy	rgen (C) 32 g of Oxygen	(D) 24 g of Oxygen					
	(A) it has a tigl(B) there are no(C) it has a hei(D) is transpare	 (A) it has a tight structure (B) there are no free electrons present in the crystal of diamond to conduct electricity (C) it has a heigh density (D) is transparent to light 							
16	(A) 1.008 mg	e mole of electron is (B) 0.55 mg	(C) 0.184 mg	(D) 1.673 mg					
17	- Liquid Hydroca (A) Methane	arbon is (B) Pentane	(C) Hexane	(D) Propane					

ا الر	No.	of Candidate: _										
HEN	ЙIS	TRY	Interme	diate Pa	art-I , Cla	ss 11 th	$(1^{st}A$	323- III)	Pape	r : I	Group – II	
		Minutes			ECTIVE	Code:	6486	Gui-11.	-2-2	23	Marks: 17	
Note:	fill 1	have four choice that circle in front cles will result in	of that que	stion num	ber. Use ma	on as A,	B, C ar	nd D. The choi	ice which	h you	think is correct, ing two or more	
 1. 1 2 	-	(A) temperature (C) concentratio (The pH of 10^{-3} m (A) 3.0	of reaction of produ nol dm ⁻³ o	n acts		(I (on of H ₂	D) no	ncentration of ne of these		nts (D) 1.	.5	
3	- 1	If a strip of Cu m (A) Cu will be d (C) Cu and Fe b	eposited		solution of	(]		is precipitate reaction take				
4		Calori is equal to (A) 0.4184 J	(1	B) 41.84	IJ	(C) 4.1	184 J		(D) 4	18.4 J	
5		The oxidation No (A) +3	(B) -3			C) -5			(D) +		
6		The change in he (A) enthalpy change (C) bond energy	ange				B) head D) int	at of sublima ernal energy	tion		e is called	
7		An aqueous solu (A) equal to that (C) more than the	t of water nat of wate	er		(B) eq D) les	ual to that of s than that of		l		
		Feeling uncomformation (A) high pressure (C) low pressure	re of CO ₂ e of O ₂	0		(B) lov	lue to w pressure of gh pressure o				
9		The value of pH (A) 14		(B) 7				×10 ⁻¹⁴		. ,	×10 ¹⁴	
10		Pressure remaining is at 0° C (A) 546° C	((B) 200°	C	((C) 54	6 K		(D) 2	273 K	
11	-	Which of the fol	lowing sp	ecies has	s unpaired	electron	s in th	e antibonding	g molec	cular c	orbitals?	
		(A) O_2^{2+}	((B) N_2^{2-}			(C) B			(D) F	32	
12		During the process of crystallization the hot saturated solution (A) is cooled very slowly to get large size crystals (B) is cooled at a moderate rate to get medium size crystals (C) is evaporated to get the crystals of the product (D) is mixed with immisible to get the pure crystals of the product When 6 d orbital is complete, the entering electron goes in to										
13		(A) 7 f		(B) 7 p			$(\mathbf{C})^{-7}$:	S		(D) 7	7 d	
		27 g of Al will r (A) 8 g of Oxyg	gen	(B) 16 g	of Oxygen	n produc	(C) 32	2 g of Oxyge	n	(D) 2	24 g of Oxygen	
15	5 -	Diamond is a bat (A) it has a tight (B) there are not (C) it has a height (D) is transpared.	t structure free elect gh density ent to light	e trons pre	sent in the	crystal	of diar	mond to cond	luct ele	ctricit	у	
	<u> </u>	The mass of one (A) 1.008 mg		electron (B) 0.55			(C) 0.	.184 mg		(D)	1.673 mg	
17	7 -	Liquid Hydroca (A) Methane	rbon is	(B) Pen	tane	5	(C) H	lexane	010 AY		Propane A 323-35000	
									Z18-(11	11-1 /	ひょうこううひひひ	

.

CHEMISTRY

Intermediate Part-I, Class 11th (1stA 323-I)

Group - II

Time: 2:40 Hours

SUBJECTIVE

101-11-2-23

Marks: 68

Note: Section-I is compulsory. Attempt any THREE (3) questions from Section-II.

SECTION-I

2. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- What is the significance of John Dalton's work about atom?
- Define molar volume, give an example.
- How many moles are present in 18 g of H₂O?
- What is effect of pressure and heat on the behaviour of gases?
- v Give the S.I units of R.
- vi State Avogadro's law and give an example.
- vii Define frequency, give its relationship with wavelength.
- viii Differentiate between continuous and line spectrum.
- ix How neutron was discovered?
- x Distinguish between Exothermic and Endothermic reactions.
- xi Show how change in internal energy is related to qv?
- xii What do you know about standard enthalpy of neutralization?

3. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- i Define molarity and molar solution.
- ii What are discontinuous solubility curves?
- iii Define Hydrates with one example.
- iv What is meant by activation of a catalyst?
- v Draw lock and key model of enzyme catalysis.
- vi How light affects rate of reaction?
- vii What is sintered glass crucible? What is its advantage?
- viii How fluted filter paper can be prepared?
- ix Write down any two uses of chromatography.
- x Define dipole-dipole forces. Give one example.
- xi Define hydrogen bonding. Give one example.
- xii What is meant by Anisotropy? Give one example.

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- Define bond order and what is bond order of O_2^{2+}
- Why MOT is superior to UBT?
- iii Differentiate between polar and nonpolar covalent bonds with examples.
- iv How ammonia is synthesized by Haber's process? Also give the optimum conditions for reaction.
- v Give the two applications of the solubility product.
- vi The change of temperature disturbs both the equilibrium position and the equilibrium constant of a reaction. Explain with reason.
- vii What is fuelcell and where it is used?
- viii Write down two applications of electrochemical series.
- What is SHE? Give its potential value.

(Turn Over)

SECTION-II (10)-11-2-23

Note: Attempt any THREE (3) questions. (2+1+1=4)5. (a) Explain combustion analysis with diagram and write formulas for percentage of Carbon, Hydrogen and Oxygen. (4)(b) Calculate the mass of 1 dm³ of NH₃ gas at 30°C and 1000 mm Hg pressure, considering that NH3 is behaving ideally. (4) 6. (a) What are London forces? Explain factors affecting London forces. (4) (b) State first law of thermodynamics. Also prove that $\Delta E = q_v$ 7. (a) Describe Millikan's Oil Drop Method for the measurement of charge on an electron. (4) (b) The solubility product of Ca(OH)₂ is 6.5×10⁻⁶. Calculate the solubility of Ca(OH)₂. (4) 8. (a) Define atomic orbital hybridization. Explain SP² hybridization by giving example of BF₃. (4) (4) (b) Define electrochemical series and give any three applications of it. (4) 9. (a) Discuss in detail any two examples of solutions of partially miscible liquid. (b) Differentiate between homogeneous catalysis and heterogeneous catalysis with one (4) example in each. 218-1st A 323-35000