4		140 0		11 10					
Roll No <u>LH/2 - G/ - // - // 8</u> (To be filled in by the candidate) MATHEMATICS (Academic Sessions 2014 - 2016 to 2017 - 2019)									
O.PAP	ER – I	I (Objective Tv	(Aca	218-(INTER PAR	4 – 20 T – I)	16 to 2017 –	2019) Time Allo	owed: 30 Minutes	
		,	10 - 12 I	GROUP -	I	(5) (5)		n Marks : 20	
PAPER CODE = 6191 Note: Four possible appropriate A. P. Cond. D. to seek question are given. The shairs which you think is somet									
Note.	ote: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling								
	two or more circles will result in zero mark in that question.								
1-1	ľ	set { 0, 1 } is							
	(A)	Addition	(B)	Multiplication	(C)	Division	(D)	Subtraction	
2	If A	and B are two	sets,	then $A - B = $;					
	(A)	$A \cup B^c$	(B)	$(A \cup B)^c$	(C)	$A \cap B^c$	(D)	$(A \cap B)^c$	
3	A so	uare matrix A	is sk	ew symmetric if	$4^t = :$	· · · · · · · · · · · · · · · · · · ·			
		А	(B)		(C)		(D)	A'	
4	<u> </u>			······································			(D)	A	
				$s m \times n$, then order			20000000		
	(A)	m×n	(B)	$m \times m$	(C)	$n \times m$	(D)	$n \times n$	
5	Sum	of roots of qu	adrati	c equation $ax^2 + b$	x + c =	0 is :			
	(4)	а	(D)	b	((())	c	(D)	b	
	(A)	\overline{b}	(B)	ā	(C)	a	(D)	$-\frac{a}{a}$	
6	Product of all fourth roots of unity is:								
					2020	82	2000		
	(A)]. 	(B)	0	(C)	1	(D)	i	
7	The	fraction $\frac{3x^2}{}$	+5	is :					
	x+1								
	(A) Proper fraction (B) Polynomial								
	(C) Partial fraction (D) Improper fraction								
8	Geometric mean between – 2 and 8 is:							WITH 1	
	(A)	4	(B)	± 4	(C)	8	(D)	+ 4i	
9	N A						(-)		
,	The 10th term of $\frac{1}{2}$, $\frac{1}{5}$, $\frac{1}{8}$, is:								
						1		1	
	(A)	30	(B)	28	(C)	$\frac{1}{29}$	(D)	$\frac{1}{32}$	
10		41							
10	The	value of $\frac{4!}{0!}$ i	s :						
	(A)	24	(B)	1	(C)	0	(D)	Infinity	
11	380 6							Infinity	
1.1	If A and B are mutually exclusive events, then $P(A \cup B) = :$								
	(A) $P(A) \cup P(B)$ (B) $P(A) + P(B)$								
	$(C) P(A \cap B) \qquad (D) P(A) - P(B)$								

 $4^n > 3^n + 4$ is true for integral values of n = :

- (B) $n \le 1$

- (C) 0
- (D) $n \ge 2$

13 The 2nd term in expansion of $\left(1 - \frac{1}{3}x\right)^{-1}$ is:

- (A) $\frac{1}{3}x$ (B) $-\frac{1}{3}x$

- (C) 3x
- (D) 2x

14 If $\sin \theta < 0$ and $\cot \theta > 0$, then θ lies in quadrant:

- (A) 1
- (B) 2

- (C) 3
- (D) 4

If α, β, γ are angles of triangle then $\tan(\alpha + \beta) + \tan \gamma = :$

- (A) 1
- (B) 0

- (C) 2
- (D) 1

Period of $\cos\left(\frac{x}{2}\right) = :$ 16

- (B) $\frac{\pi}{2}$

- (C) 3π
- (D) 4π

17 Radius of escribed circle opposite to vertex 'c' of the triangle is :

- (A) $\frac{\Delta}{s}$ (B) $\frac{\Delta}{s-a}$

- (C) $\frac{\Delta}{s-c}$ (D) $\frac{\Delta}{s-b}$

18 The value escribed circle $r_1 = :$

- (A) $\frac{\Delta}{s-a}$ (B) $\frac{\Delta}{s-c}$

- (C) $\frac{\Delta}{s}$
- (D) $\frac{\Delta}{a}$

19 The value of $\cos(\tan^{-1} 0) =$:

- (A) 1
- (B) 1

- (C) 0
- (D) ∞

If $\cos x = -\frac{1}{2}$, then reference angle is:

- (A) $\frac{\pi}{6}$
- (B) $-\frac{\pi}{3}$

- (C) $\frac{\pi}{3}$
- (D) $\frac{\pi}{2}$

Roll No LHC-G1-11-18 (To be filled in by the candidate)

Academic Sessions 2014 - 2016 to 2017 - 2019).

MATHEMATICS

218-(INTER PART - I)

PAPER – I (Essay Type) GROUP – I

Time Allowed: 2.30 hours

Maximum Marks: 80

SECTION - I

2. Write short answers to any EIGHT (8) questions:

- (i) Simplify $(-1)^{-21}$
- (ii) Express the complex number $(1+i\sqrt{3})$ in polar form.
- (iii) Find the multiplicative inverse of (-4,7)
- (iv) Is there any set which has no proper subset? If so name that set.
- (v) Write the converse and contrapositive of $\sim q \rightarrow \sim p$
- (vi) For A = $\{1, 2, 3, 4\}$, find the relation in A for $R = \{(x, y) | x + y < 5\}$, also write the range of R.
- (vii) If $A = \begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$, $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, find the values of a and b.
- (viii) Find the multiplicative inverse of the matrix $\begin{bmatrix} 2i & i \\ i & -i \end{bmatrix}$
- (ix) Show that $\begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ yz & zx & xy \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^2 & y^2 & z^2 \end{vmatrix}$
- (x) Solve the equation $x^4 6x^2 + 8 = 0$
- (xi) Show that $x^3 y^3 = (x y)(x \omega y)(x \omega^2 y)$, ω is complex cube root of unity.
- (xii) If α , β are the roots of $3x^2 2x + 4 = 0$, then find the value of $\frac{1}{\alpha^3} + \frac{1}{\beta^3}$

3. Write short answers to any EIGHT (8) questions :

- (i) Resolve $\frac{x^2+1}{(x+1)(x-1)}$ into partial fractions.
- (ii) If $a_{n-2} = 3n 11$, find the nth term of the sequence
- (iii) If 5, 8 are two A.Ms between a and b, find a and b
- (iv) Which term of the A.P. 5, 2, -1, ---- is -85?
- (v) Insert two G.Ms between 1 and 8.
- (vi) If 5 is the harmonic mean between 2 and b, find b
- (vii) Define fundamental principle of counting.
- (viii) Find the number of the diagonals of a 6-sided figure.
 - (ix) What is probability that a slip of numbers divisible by 4 are picked from the slips bearing number 1, 2, 3, ---- 10?
 - (x) State the principle of mathematical induction.
 - (xi) If x is so small that its square and higher powers can be neglected, then show that $\frac{1-x}{\sqrt{1+x}} = 1 \frac{3}{2}x$
- (xii) Find the 6th term in the expansion of $\left(x^2 \frac{3}{2x}\right)^{10}$

16

16

5

5

4. Write short answers to any NINE (9) questions:

- (i) An arc subtends an angle of 70° at the center of a circle and its length is 132 m. Find the radius of the circle.
- (ii) Define coterminal angles.
- (iii) Verify $\sin^2 \frac{\pi}{6} + \sin^2 \frac{\pi}{3} + \tan^2 \frac{\pi}{4} = 2$
- (iv) If α, β, γ are angles of a triangle \triangle ABC, then prove that $\tan(\alpha + \beta) + \tan \gamma = 0$
- (v) Find the value of sin 105°, without calculator.
- (vi) Prove that $\cot \alpha \tan \alpha = 2 \cot 2\alpha$
- (vii) Write the domain of $y = \sin x$
- (viii) A vertical pole is 8m high and the length of its shadow is 6m. What is the angle of elevation of the sun at that moment?
- (ix) Find α and β in the triangle \triangle ABC in which a=7, b=7, c=9
- (x) Find the area of the triangle \triangle ABC in which a = 200, b = 120, $\gamma = 150^{\circ}$
- (xi) Evaluate without using calculator $\tan^{-1} \left(\frac{1}{\sqrt{3}} \right)$
- (xii) Solve the equation $2\sin x 1 = 0$
- (xiii) Find the solution of the equation which lie in interval $[0,2\pi]$: $\sec x = -2$

SECTION - II

Note: Attempt any THREE questions.

5. (a) Consider the set $S = \{1, -1, i, -i\}$. Set up its multiplication table and show that the set S is an abelian group under multiplication.

(b) If $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 1 & -1 & 1 \end{bmatrix}$ then find A^{-1} by using adjoint of the matrix.

- 6. (a) Solve the system of equations : x + y = a + b; and $\frac{a}{x} + \frac{b}{y} = 2$
 - (b) Resolve $\frac{9x-7}{(x^2+1)(x+3)}$ into partial fractions.
- 7. (a) Find four numbers in arithmetic sequence (A.P.) whose sum is 32 and the sum of whose squares is 276.
 - (b) Use binomial series to show that $1 + \frac{1}{4} + \frac{1 \times 3}{4 \times 8} + \frac{1 \times 3 \times 5}{4 \times 8 \times 12} + --- = \sqrt{2}$
- 8. (a) If $\csc\theta = \frac{m^2 + 1}{2m}$ and $m > 0 \left(0 < \theta < \frac{\pi}{2} \right)$, find the values of the all remaining trigonometric ratios.
 - (b) Prove that $\sin \frac{\pi}{9} \sin \frac{2\pi}{9} \sin \frac{\pi}{3} \sin \frac{4\pi}{9} = \frac{3}{16}$ without using calculator.
- 9. (a) With usual notations, prove that $r_1 = \frac{\Delta}{s}$
 - (b) Prove that $\sin^{-1}\frac{3}{5} + \sin^{-1}\frac{8}{17} = \sin^{-1}\frac{77}{85}$

Roll No		(To be filled in b						
	EMATIGS (Academic Sessions ER – I (Objective Type) 218-(INTER F	2014 – 2016 to 2017 – PART – I)	Time Allowed: 30 Minutes					
GROUP – II Maximum Marks : 20								
PAPER CODE = 6194 Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct,								
Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling								
	two or more circles will result in zero mark in that question.							
1-1	$2 \sin\left(\frac{P+Q}{2}\right) \cos\left(\frac{P-Q}{2}\right) =$							
	(A) $\sin P + \sin Q$ (B) $\sin P -$	$\sin Q$						
	(C) $\cos P + \cos Q$ (D) $\cos P -$	$\cos Q$						
2	With usual notation ${}^{n}C_{0} = :$							
	(A) 1 (B) 0	(C) n	(D) 2					
3	$\sin^{-1} A - \sin^{-1} =$:							
	(A) $\sin^{-1}(A\sqrt{1-B^2}-D\sqrt{1-A^2})$	(B) $\sin^{-1}(A\sqrt{1-B})$						
	(C) $\cos^{-1}(A) = B^2 = \sqrt{1 - A^2}$	(D) $\cos^{-1}(A\sqrt{1-B})$						
4		e quadrantal angle 76	5° are same as of the					
	angle:							
	(A) 30° (B)	(C) 60°	(D) 90°					
5	Solution of $\cot \theta = \frac{1}{\sqrt{3}}$ in quadrant – III							
	5π 7π	$n \rightarrow n$	(D)					
	(A) $\frac{3\kappa}{4}$ (B) $\frac{\kappa}{6}$	$\frac{1}{3}$	(D) π					
6	The sum of coefficients in the binomia	parsion when n =	4 is :					
' .	(A) 1 (B) 8	(C) 16	(D) 32					
7	With usual notation the "circum-radius	S''R = :						
	(A) $\frac{\Delta}{\Delta}$ (B) $\frac{abc}{\Delta}$	(C) Δ	(D) $\frac{s}{\Lambda}$					
	s 4Δ	(C) $\frac{\Delta}{abc}$	Δ					
8	Period of $3\sin 2x$ is :		_					
	(A) 6π (B) 2π	(C) π	(D) $\frac{\pi}{2}$					
9	Which one is divisible by 2 for all posi-	tive integral values of	`n:					
	(A) $n^3 - n$ (B) $5^n - 1$	(C) $5^n - 2^n$	(D) $n^2 + n$					
10	$(\beta - \gamma)$							
	In law of tangents $\frac{\tan\left(\frac{\beta-\gamma}{2}\right)}{\tan\left(\frac{\beta+\gamma}{2}\right)} = :$							
	$\tan \left(\frac{\beta + \gamma}{\beta} \right)$							
	(2)							
	$(A) \frac{a-b}{a-b}$ (B) $\frac{c-a}{a-b}$	(C) $\frac{c-b}{c-b}$	(D) $\frac{b-c}{b+c}$					
	(A) $\frac{a-b}{a+b}$ (B) $\frac{c-a}{c+a}$	(C) $\frac{c-b}{c+b}$	b+c					
11	If 'ω' be the cube root of unity, then	$\omega^2 = :$						
	(A) $\frac{-1-\sqrt{3}i}{2}$ (B) $\frac{1-\sqrt{3}i}{2}$	(C) 1	(D) $\frac{1+\sqrt{3}i}{2}$					
			(Turn Over)					

1	-12	Multiplicative	inverse o	of compl	ex number	-3 - 5i	is:

(A)
$$\frac{3}{34} + \frac{5}{34}i$$
 (B) $\frac{-3}{34} - \frac{5}{34}i$

(B)
$$\frac{-3}{34} - \frac{5}{34}i$$

(C)
$$\frac{-3}{34} + \frac{5}{34}i$$

(C)
$$\frac{-3}{34} + \frac{5}{34}i$$
 (D) $\frac{-3}{\sqrt{34}} + \frac{5}{\sqrt{34}}i$

Simplify form of
$$\frac{10!}{7!}$$
 is equal to :

If matrix
$$\begin{bmatrix} x & 4 \\ 2 & 8 \end{bmatrix}$$
 is singular then $x = :$

$$(A)$$
 0

(B)
$$-1$$

(B)
$$\pm 8$$

(C)
$$\frac{32}{5}$$

Roots of the equation
$$x^2 - 7x + 10 = 0$$
 are :

(A)
$$(2, -5)$$

(B)
$$(-2,5)$$

(C)
$$(2,5)$$

(D)
$$(-2, -5)$$

(A)
$$(2,-5)$$
 (B) $(-2,5)$ (C) $(2,5)$ (D) $(-2,-5)$
17 Formula for the sum of terms of A.P. (Arithmetic progression):

(A)
$$a_n = a_1 + (n-1)$$

$$(\mathbf{R} + s_n = \frac{n}{2}(a_1 + a_n)$$

(C)
$$s_n = \frac{a_1(1 - r^n)}{1 - r}$$

(D)
$$s =$$

18 Tabular form of
$$\{x \mid x \in E : 4 \le x\}$$

$$(A) \{\}$$

(B)
$$\{4\}$$

Partial fractions of
$$\frac{1}{(x^2+1)(x-1)}$$
 are of the form:

(A)
$$\frac{A}{x^2+1} + \frac{B}{x-1}$$

(A)
$$\frac{A}{x^2+1} + \frac{B}{x-1}$$
 (B) $\frac{A}{x+1} + \frac{B}{(x^2+1)} + \frac{C}{x-1}$

(C)
$$\frac{A}{x^2+1} + \frac{Bx+C}{x-1}$$
 (D) $\frac{Ax+B}{x^2+1} + \frac{C}{x-1}$

(D)
$$\frac{Ax + B}{x^2 + 1} + \frac{C}{x - 1}$$

(A)
$$A^t = -A$$
 (B) $A^t = A$

(B)
$$A^t = A$$

(C)
$$(\overline{A})^t = A$$

(C)
$$(\overline{A})^t = A$$
 (D) $(\overline{A})^t = -A$

(To be filled in by the candidate) essions 2014 - 2016 to 2017 - 2019) **MATHEMATICS** 218-(INTER PART - I) Time Allowed: 2.30 hours PAPER - I (Essay Type) GROUP - II Maximum Marks: 80 SECTION - I 2. Write short answers to any EIGHT (8) questions : (i) Does the set $\{1,-1\}$ close w.r.t. : (a) addition (b) multiplication (ii) Find multiplicative inverse of the complex number (-4, 7)(iii) If $z = 1 - i\sqrt{3}$, then find |z|(iv) Write inverse and contrapositive of $q \rightarrow p$ (v) If $A = \{a, b, c\}$, then write all subsets of A and find P(A)(vi) Show that set of natural number is not a group w.r.t. addition. (vii) Define diagonal matrix with an example. (viii) If $A = \begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix}$, then find A^{-1} (ix) Without expansion show that $\begin{vmatrix} 6 & 7 & 8 \\ 3 & 4 & 5 \\ 2 & 3 & 4 \end{vmatrix} = 0$ (x) Find four 4th roots of unity. (xi) If α , β are roots of $x^2 - px - p - c = 0$, show that $(1 - \alpha)(1 + \beta)$ (xii) Find quadratic equation whose roots are 2ω , $2\omega^2$, where ω is cube roots of unity. 3. Write short answers to any EIGHT (8) questions : (i) Resolve $\frac{x^2+1}{(x+1)(x-1)}$ into partial fractions. (ii) Find the indicated term of the sequence 2, 6, 11, 17, $a_7 = ?$ (iii) Sum the series upto n-terms $\frac{1}{1-\sqrt{x}} + \frac{1}{1-x} + \frac{1}{1+\sqrt{x}} = \frac{1}{1+\sqrt{x}}$ (iv) Insert two G.Ms between 1 and 8. (v) Find the sum of the infinite geometric series $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{1} + \frac{1}$ (vi) Find the 12th term of the harmonic sequence $\frac{1}{3}$, $\frac{2}{9}$, $\frac{1}{6}$,

(ix) There are 5 green and 3 red balls in a box, one ball is taken out, find the probability

(xii) Using binomial theorem find the value of (1.03)3 upto three decimal places.

(vii) Evaluate $\frac{15!}{15!(15-15)!}$

(viii) Find the value of n, when $\frac{12 \times 11}{2!} = {}^{n}C_{10}$

(x) Find the number of the diagonals of a 6-sided figure.

(i) Define angle in the standard position with figure.

(xi) Find the term involving x^4 in the expansion of $(3-2x)^7$.

(ii) Find x, if $\tan^2 45^\circ - \cos^2 60^\circ = x \sin 45^\circ \cos 45^\circ \tan 60^\circ$

that the ball drawn is green.

4. Write short answers to any NINE (9) questions :

(iii) Prove that $\frac{1}{1+\sin\theta} - \frac{1}{1-\sin\theta} = 2\sec^2\theta$

16

16

18

(Turn Over)

- (iv) Find the value of sin 540° without using calculator
 - (v) Prove that $\tan\left(\frac{\pi}{4} \theta\right) + \tan\left(\frac{3\pi}{4} + \theta\right) = 0$
 - (vi) Express $\sin(x+45^\circ)\sin(x-45^\circ)$ as sum or difference.
 - (vii) Find the period of $\cos \frac{x}{6}$
 - (viii) Find the area of triangle $\triangle ABC$, in which b = 37, c = 45 and $\alpha = 30^{\circ}50'$
 - (ix) Prove that $r r_1 r_2 r_3 = \Delta^2$ (Using usual notation)
 - (x) Prove that $(r_1 + r_2) \tan \frac{\gamma}{2} = c$ (Using usual notation)
 - (xi) Find domain and range of $y = \cos^{-1} x$
 - (xii) Solve the equation $\sin x = \frac{1}{2}$
 - (xiii) Find solutions of $\cot \theta = \frac{1}{\sqrt{3}}$ which lie in $[0, 2\pi]$

SECTION - II

Attempt any THREE questions. Note:

- (a) Convert the following theorem to logical form and prove it by constructing truth table $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - (b) Solve the following system by reducing their augmented matrices to the echelon form: x + 2y + z = 2

$$2x + y + 2z = -1$$

$$2x + 3y - z = 9$$

6. (a) If α, β are the roots of the equation $ax^2 + bx + c = 0$ then find the equation whose roots are $\frac{-1}{\alpha^3}$, $\frac{1}{\beta^3}$

- 7. (a) For what value of n, $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ is the positive geometric mean (G.M.) between a and b
 - (b) If x is so small that its square and higher powers can be neglected, then show that :

$$\frac{(1-x)^{\frac{1}{2}}(9-4x)^{\frac{1}{2}}}{(8+3x)^{\frac{1}{3}}} \approx \frac{3}{2} - \frac{61}{48}x.$$

- 8. (a) If $\csc\theta = \frac{m^2 + 1}{2m}$ and m > 0, $\left(0 < \theta < \frac{\pi}{2}\right)$, find the values of the remaining trigonometric ratios.
 - (b) Prove without using calculator that $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ} = \frac{1}{16}$
- 9. (a) The sides of a triangle are $x^2 + x + 1$, 2x + 1 and $x^2 1$. Prove that the greatest angle of the triangle is 120°.
 - (b) Prove that $2 \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7} = \frac{\pi}{4}$

5

- 5 5

- - 5
- 5
- 5
- 5