	Supd	Int.	ictitio	us Roll No. (For Of	fice Us	e) Si	ign. C	andidate				
RT EC :- V	TIVÉ Vrite Vill re	É PART) your Roll No. in esult in loss of m	arks.	All questions a	r writ re to	Marks : 2 Time : 30 ing, cutting, using be attempted.	Mining of	utes lead pencil	5			
		The number $\sqrt{13}$ is known as;										
	A	Rational number	В	Prime number	\mathbf{c}	Irrational number	D	Imaginary number				
2	If ω ω^2 is	is cube root of uni	ity and	$\{1,\omega,\omega^2\}$ is a gro	oup u	nder multiplicatio	n the	n inverse of				
	A	1	В	ω	c	ω^2	D	- ω²				
3	IfA	is a matrix of ordr	3×2 tl	hen order of matr	rix A'	A is						
	A	2×3	В	3×2	c	3×3	D	2×2				
4	If 2	$\begin{bmatrix} 2\lambda & 1 \\ 4 & 2 \end{bmatrix}$ is singular	matri	x then λ will be;	- 17 - 17 - 17 - 17 - 17 - 17 - 17 - 17							
	A	0	В	1	c	4	D	2				
5	lf α	,eta are the roots of	$x^2 - 4$	4x + 3 = 0 then $(a$	$(\alpha + \beta)$	2 =						
	A	16	В	4	C	-4	D	3				
6	Four											
	A	±4,±4 <i>i</i>	В	±1,±i	C	± 2,±'2 <i>i</i>	D	±16,±16 <i>i</i>				
7	Part	tial fraction of $\frac{1}{x^3}$	- will	be of the form;								
	A	$\frac{Ax+B}{x^3+1}$	В	$\frac{A}{x+1} + \frac{Bx}{x^2 - x + 1}$	C	$\frac{A}{x+1} + \frac{Bx+C}{x^2+x+1}$	D	$\frac{A}{x+1} + \frac{Bx + C}{x^2 - x + 1}$				
8	The	series 1+2x+4x ² +8										
	A	$ x < \frac{1}{2}$	В	$ x > \frac{1}{2}$	C	x > 1	D	x > 2				
9	Har	monic mean betwe	en 3 a	and 7 is;			1					
	A	21	В	21 5	c	5	D	<u>5</u> 21				
10	A fa											
	A	3 8	В	1	c	18	D	$\frac{1}{2}$				
	1			(P-T-O)			-1					

AJK-11-19

Page 2

1	A die is rolled once then probability of getting even number of dots is:											
	A	1/2	В	$\frac{1}{3}$	C	<u>1</u>	D	$\frac{1}{4}$				
2	Sum of binomial co-efficient in the expansion of $(a+b)^6$ is ;											
	A	16	В	32	c	48	D	64				
3	The middle term in the expansion of $(x-y)^{12}$ will be;											
	A	6 th	В	5 th	c	7 th	D	8 th				
4	The angle in standard position whose terminal arm lies on x-axis or y-axis is called;											
	A	Acute angle	В	Quadrantal angle	c	General angle	D	Obtuse angle				
15	$Cot\left(\frac{3\pi}{2}-\theta\right)=$											
	A	$Cot\theta$	В	-Cott	c	− tan θ	D	$\tan heta$				
6	The range of the function $y = Sinx$ is;											
	A	-1≤ <i>y</i> ≤1	В	-1≤ y ≤ 0	С	0 ≤ <i>y</i> ≤ l	Đ	$\frac{-\pi}{2} \le y \le \frac{\pi}{2}$				
7	In $\triangle ABC$ if $m < B = 90^{\circ}$ then law of cosines will become;											
	A	$a^2 = b^2 + c^2$	В	$b^2 = a^2 + c^2$	C	$c^2 = a^2 + b^2$	D	$b^2 = a^2 - c^2$				
	The	circle which passe	s throu	gh the vertices of	trian	gle is called;						
8					T	Circum circle	D	Point circle				
8	A	e-circle	В	In-circle	C	Circum en cie						
19		e-circle = cot x is principa				Circum circle						
						$-2\pi < x < 2\pi$	D	$0 < x < \pi$				
	If y	= cot x is principa	l cotang	$-\pi < x < 0$;							

ATHEMATICS

019/1 INTERMEDIATE Roll. No.

2-

3-

/APER: PART - I INTERMEDIATE

/MARKS: 80

TIME: 2:30 Hours (SUBJECTIVE PART)

Note: - Attempt any TWENTY FIVE (25) short questions in all selecting eight from Q. 2 and Q.

3 each and nine from Q. 4. (25 x 2 = 50)

SECTION - I

Wr	ite short answers of any eight questions.		(2 x 8 = 16)		
í	Define complex number.	2	Express the complex number $\sqrt{3} + i$ in polar form.		
3	Find the multiplicative inverse of the complex number $-3-5i$	4	Convert the laws $(A \cap B)' = A' \cup B'$ and $(A \cup B)' = A' \cap B'$ in logical form.		
5	Define on-to function.	6	Consider the set $S = \{1, -1, i, -i\}$. Set up the multiplication table.		
7	Convert the equation $x^{\frac{1}{2}} - x^{\frac{1}{4}} - 6 = 0$ in quadratic form.	8	Prove that $1.\omega.\omega^2 = 1$.		
9	Discuss the nature of roots of the equation $x^2 + 2x + 3 = 0$.	10	If A and B are matrices of same order then explain why in general $(A+B)^2 \neq A^2 + 2AB + B^2$		
11	If $A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & -2 & 0 \\ -2 & -2 & 1 \end{bmatrix}$ then find minor	12	Find inverse of the matrix $\begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix}$		

] 11	$\begin{bmatrix} 1 & 4 & 2 & 0 \\ -2 & -2 & 1 \end{bmatrix}$ and co-factor of -3.	12	Find inverse of the matrix [2 1]		
Wr	ite short answers of any eight questions		$(2 \times 8 = 16)$		
1	What are partial fractions?	2	Differentiate between conditional equation and identity.		
3	Write identity for $\frac{x^2 + x - 1}{(x+2)^3}$.4	Determine whether -19 is the term of A.P 17, 13, 9, or not.		
5	Insert two G.Ms between 2 and 16.	6	Find the value of r if $a_4 = \frac{8}{27}$ and $a_7 = \frac{-64}{729}$ of a G.P		
7	If 5 is the harmonic mean between 2 and a, find a.	8	If the nth term of the A.P is 3n-1 find A.P		
9	A die is rolled. What is the probability that the dots on the top are greater than 4?	10	State the principle of mathematical induction.		
11	Calculate (2.02) ⁴ by binomial theorem.	12	Prove that for $n = 3$, 4 the statement $5^n - 2^n$ is divisible by 3, is true or false.		

AJK-11-19

Page 2

W	rite short answers of any nine questions.	$(2 \times 9 = 18)$		
1	Define Radian.	2	Convert 54°45' into radians.	
3	If $Sin\theta = -\frac{1}{\sqrt{2}}$ and the terminal arm of the angle is not in quad. III find value of $Cos\theta$?	4	If α, β, γ are the angles of a triangle ABC, then prove that $Sin(\alpha + \beta) = Sin\gamma$	
5	Prove that $\tan(45^{\circ} + A)\tan(45^{\circ} - A) = 1$	6	Show that $Sin2\theta = -\frac{2 \tan \theta}{1 + \tan^2 \theta}$	
7	Write the Domain and Range of tan x	8	A Vertical Pole is 8m high and the length of its shadow is 6m. What is the angle of elevation of the sun at that moment?	
9	In triangle ABC if $\beta = 60^{\circ}$, $\gamma = 15^{\circ}$, $b = \sqrt{6}$ Find c.	10	Find α by using half angle formula when a=283, b=317, c=428.	
11	Find the value of $Cos^{-1}\left(-\frac{1}{2}\right)$	12	Define trigonometric equation.	
13	Solve the equation $1 + \cos x = 0$			

SECTION – II

ote:	- Att	empt any three questions. $(10 \times 3 = 3)$	0)			
	a	$\sim (p \rightarrow q) \leftrightarrow (p \land \sim q)$				
5	b	If l, m, n are pth, qth and rth terms of an A.P, then show that $l(q-r) + m(r-p) + n(p-q) = 0$	(05)			
6	a	Find x if $\begin{vmatrix} 1 & x-1 & 3 \\ -1 & x+1 & 2 \\ 2 & -2 & x \end{vmatrix} = 0$				
	b	Prove from first principle that ${}^{n}p_{r} = {}^{n-1}p_{r} + r$, ${}^{n-1}p_{r-1}$	(05)			
× .	a	Show that the roots of $x^2 + (mx + c)^2 = a^2$ will be equal, if $c^2 = a^2(1 + m^2)$				
7	b	Use mathematical induction to prove $\frac{1}{2 \times 5} + \frac{1}{5 \times 8} + \frac{1}{8 \times 11} + + \frac{1}{(3n-1)(3n+2)} = \frac{n}{2(3n+2)}$	(05)			
8	a	If $Co \sec \theta = \frac{m^2 + 1}{2m}$ and $m > 0$ $(0 < \theta < \frac{\pi}{2})$, Find the values of the remaining trigonometric ratios.	(05)			
	b	Reduce $Sin^4\theta$ to an expression involving only function of multiples of θ raised to the first power.	(05)			
0	a	The area of triangle is 121.34. If $\alpha = 32^{\circ}15'$, $\beta = 65^{\circ}37'$ then find side c and angle γ	(05)			
9	b	Prove that $Sin^{-1} \frac{1}{\sqrt{5}} + \cot^{-1} 3 = \frac{\pi}{4}$	(05)			

(The End)