(To be filled in by the candidate)

toll No **4ATHEMATICS**

(Academic Sessions 2015 - 2017 to 2018 - 2020)

), PAPER -- I (Objective Type)

219-(INTER PART - I)

GROUP - I

Time Allowed: 30 Minutes Maximum Marks: 20

PAPER CODE = 6195

lote: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question.

1-1	If $y = a$ is a fac	ctor of polynomial $f(x)$, then $f(a)$ is	3
1-1	11 2 - 4 15 4 14	ctor or porynomially (ii), many (ii)	

$$(A) = 0$$

(B)
$$< 0$$

(D)
$$\neq 0$$

2 If
$${}^{n}C_{5} = {}^{n}C_{4}$$
, then n is

(A) 9 (B) 7 The multiplicative inverse of (1, -2) = :

(A)
$$(\frac{1}{5}, \frac{-2}{5})$$

(B)
$$(\frac{-1}{5}, \frac{-2}{5})$$

(C)
$$(\frac{1}{5}, \frac{2}{5})$$

(D)
$$(\frac{-1}{5}, \frac{2}{5})$$

(A) $(\frac{1}{5}, \frac{-2}{5})$ (B) $(\frac{-1}{5}, \frac{-2}{5})$ (C) $(\frac{1}{5}, \frac{2}{5})$ 9th term in the sequence $\frac{1}{3}, \frac{1}{5}, \frac{1}{7}, ----$ is :

(A)
$$\frac{1}{13}$$

(B)
$$\frac{1}{15}$$

(C)
$$\frac{1}{17}$$

(D)
$$\frac{1}{19}$$

The contrapositive of $\sim p \rightarrow \sim q$ is:

(A)
$$p \rightarrow q$$

(B)
$$q \rightarrow p$$

(B)
$$q \rightarrow p$$
 (C) $\sim q \rightarrow \sim p$

(D)
$$\sim q \rightarrow p$$

From the identity 5x+4=A(x-1)+B(x+2), then value of B = :

$$(A) - 3$$

$$(C) -2$$

$$(D)$$
 2

The sum of four 4th roots of 16 is:

$$(A)$$
 0

$$(B)$$
 2

8 If
$$\begin{bmatrix} x-3 & 1 \\ -5 & -4 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -5 & -4 \end{bmatrix}$$
, then $x = :$

$$(B) -5$$

(C)
$$-1$$

The arithmetic mean between $\sqrt{2}$ and $3\sqrt{2}$ is :

(A)
$$3\sqrt{2}$$

(B)
$$2\sqrt{2}$$

(C)
$$4\sqrt{2}$$

(D)
$$\sqrt{2}$$

10

If
$$A = \begin{bmatrix} 0 & 0 & 5 \\ 6 & 7 & 3 \end{bmatrix}$$
, then $A_{33} = :$

$$(A) -1$$

$$(C)$$
 3

$$(D)$$
 0

Period of $\cot \theta$ is: 11

(B)
$$2\pi$$

(C)
$$\frac{\pi}{2}$$

(D)
$$\frac{3\pi}{2}$$

(Turn Over)

	11/2011-11/1	(2)				
1-12	Number of signals can be made with 4 flags when one flag is used at a time are:					
	(A) 4C_0	(B) ${}^{4}C_{1}$	(C) 4C_2	(D) 4C_3		
13	The equation $\sin^2 x - \sin^2 x$	$\sec x = \frac{3}{4}$ is called:				
	(A) Trigonometric equation (B) Linear equation					
	(C) Quadratic equati	on (D)	Quantic equation			
14	$3\sin\alpha - 4\sin^3\alpha = :$					
20000	(A) $\sin \alpha$	(B) $\sin 2\alpha$	(C) $\sin 3\alpha$	(D) $\sin 4\alpha$		
15	Domain of the function	on $y = \sin^{-1} x$ is:				
	$(A) -\frac{\pi}{2} \le x \le \frac{\pi}{2}$	(B) $-1 \le y \le 1$	(C) $-1 \le x \le 1$	$(D) -\frac{\pi}{2} \le y \le \frac{\pi}{2}$		
16	Francesco Mourolico	devised the method	of:			
	(A) Partial fraction	(B) Induction	(C) Logarithms	(D) Binomial		
17	If $\ell = 35$ cm and $\theta =$	1 rad, then r = :				
	(A) 35°	(B) 35 cm	(C) 35 rad	(D) 35 m		
18	In any ΔABC with us	ual notations, $\frac{\Delta}{s-c}$	=:			
	(A) r	(B) r ₁	(C) r ₂	(D) r_3		
19	The general term in the expansion of $(a+x)^n$ is:					
	$(A) \binom{n}{a} a^{n-r} x^r$	(B) $\binom{n}{x} a^{n-r} x^r$	(C) $\binom{n}{r}a^{n-r}x^r$	(D) $\binom{n}{r}a^{n-r}x$		
20	If sides of a ΔABC will be:	are $a = 4584$, b =	5140 and c = 3624, the	n greatest angle		
	(Α) α	(B) β	(C) γ	(D) a		

24-219-I-(Objective Type)-10250 (6195)

(To be filled in by the candidate)

(Academic Sessions 2015 - 2017 to 2018 - 2020)

MATHEMATICS

219-(INTER PART – I) GROUP – I Time Allowed: 2.30 hours Maximum Marks: 80

PAPER – I (Essay Type)

SECTION - I

2. Write short answers to any EIGHT (8) questions :

16

- (i) If z_1 and z_2 are complex numbers then show that $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
- (ii) Find out real and imaginary parts of $(\sqrt{3} + i)^3$
- (iii) Factorize $a^2 + 4b^2$
- (iv) Define power set of a set and give an example.
- (v) Define a bijective function.
- (vi) Construct truth table and show that the statement $\sim (p \rightarrow q) \rightarrow p$ is a tautology or not.
- (vii) Find the matrix X if $X \begin{bmatrix} 5 & 2 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 12 & 3 \end{bmatrix}$
- (viii) For the matrix $A = \begin{bmatrix} 1 & -2 & 3 \\ -2 & 3 & 1 \\ 4 & -3 & 2 \end{bmatrix}$ find cofactor A_{12}
- (ix) Without expansion show that $\begin{vmatrix} \alpha & \beta + \gamma & 1 \\ \beta & \gamma + \alpha & 1 \\ \gamma & \alpha + \beta & 1 \end{vmatrix} = 0$
- (x) When $x^4 + 2x^3 + kx^2 + 3$ is divided by (x-2), the remainder is 1. Find the value of k.
- (xi) If α , β are the roots of $ax^2 + bx + c = 0$, $a \ne 0$ then find the value of $\alpha^2 + \beta^2$
- (xii) The sum of a positive number and its square is 380. Find the number.

3. Write short answers to any EIGHT (8) questions:

16

- (i) Define partial fraction.
- (ii) In the identity 7x + 25 = A(x+4) + B(x+3), calculate values of A and B.
- (iii) Resolve $\frac{1}{x^2-1}$ into partial fractions.
- (iv) Write the first four terms of the sequence, if $a_n a_{n-1} = n+2$, $a_1 = 2$
- (v) Which term of the arithmetic sequence 5, 2, -1, ---- is -85.
- (vi) Find three A.Ms between 3 and 11.
- (vii) If $\frac{1}{a}$, $\frac{1}{b}$ and $\frac{1}{c}$ are in G.P, show that common ratio is $\pm \sqrt{\frac{a}{c}}$
- (viii) Insert two G.Ms between 2 and 16.
- (ix) Find the value of n when ${}^{n}C_{10} = \frac{12 \times 11}{21}$
- (x) Show that $\frac{n^3 + 2n}{3}$ represents an integer for n = 2, 3.
- (xi) Expand $\left(1-\frac{3}{2}x\right)^{-2}$ upto 4 terms.
- (xii) If x is so small that its square and higher power can be neglected, then show that $\frac{\sqrt{1+2x}}{\sqrt{1-x}} \approx 1 + \frac{3}{2}x$

(Turn Over)

4. Write short answers to any NINE (9) questions :

(i) Find ℓ , if $\theta = 65^{\circ}20'$, r = 18 mm

(ii) Prove $\sin^2 \frac{\pi}{6} : \sin^2 \frac{\pi}{4} : \sin^2 \frac{\pi}{3} : \sin^2 \frac{\pi}{2} = 1:2:3:4$

(iii) Prove $\cos^2 \theta - \sin^2 \theta = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$

(iv) Prove that $\tan 56^{\circ} = \frac{\cos 11^{\circ} + \sin 11^{\circ}}{\cos 11^{\circ} - \sin 11^{\circ}}$

(v) Prove $\frac{1-\cos\alpha}{\sin\alpha} = \tan\frac{\alpha}{2}$

(vi) Prove $\cos 20^{\circ} + \cos 100^{\circ} + \cos 140^{\circ} = 0$

(vii) Find the period of $\tan \frac{x}{7}$

(viii) In $\triangle ABC$, $\beta = 60^{\circ}$, $\gamma = 15^{\circ}$, $b = \sqrt{6}$, find c.

(ix) If a = 200, b = 120, $\gamma = 150^{\circ}$, find the area of a triangle ABC

(x) Prove that $r_1 r_2 r_3 = rs^2$

(xi) Prove $\sin(2\cos^{-1}x) = 2x\sqrt{1-x^2}$

(xii) Solve $1 + \cos x = 0$

(xiii) Find the solutions of $\sin x = -\frac{\sqrt{3}}{2}$ in $[0, 2\pi]$

SECTION - II

Note: Attempt any THREE questions.

5. (a) Prove that all 2×2 non-singular matrices over the real field form a non-abelian group under multiplication.

(b) Find three, consecutive numbers in G.P whose sum is 26 and their product is 216.

6. (a) Find the inverse of the matrix $A = \begin{bmatrix} 2 & 5 & -1 \\ 3 & 4 & 2 \\ 1 & 2 & -2 \end{bmatrix}$ by using row operation. 5

(b) Prove that ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$ 5

7. (a) Solve the system of equations:

 $12x^2 - 25xy + 12y^2 = 0$

(b) If $y = \frac{1}{3} + \frac{1.3}{2!} (\frac{1}{3})^2 + \frac{1.3.5}{3!} (\frac{1}{3})^3 + \dots$ then prove that $y^2 + 2y - 2 = 0$ 5

8. (a) Prove that $\sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = \sec\theta - \tan\theta$ where θ is not an odd multiple of $\frac{\pi}{2}$ 5

(b) If α , β , γ are the angles of a triangle ABC, then show that :

 $\cot \frac{\alpha}{2} + \cot \frac{\beta}{2} + \cot \frac{\gamma}{2} = \cot \frac{\alpha}{2} \cot \frac{\beta}{2} \cot \frac{\gamma}{2}$ 5

9. (a) The sides of a triangle are $x^2 + x + 1$, 2x + 1 and $x^2 - 1$. Prove that the greatest angle of the triangle is 120°.

(b) Prove that $\tan^{-1}\frac{3}{4} + \tan^{-1}\frac{3}{5} - \tan^{-1}\frac{8}{19} = \frac{\pi}{4}$ 5

24-219-I-(Essay Type)-41000

11

5

5

5

5

oll No

LHR. G2-11-19

___ (To be filled in by the candidate)

MATHEMATICS

(Asademic Sessions 2015 - 2017 to 2018 - 2020) 219-(INTER PART - I)

/ PAPER - I (Essay Type)

GROUP – II

Time Allowed: 2.30 hours Maximum Marks: 80

SECTION - I

2. Write short answers to any EIGHT (8) questions :

- (i) Prove the rule of addition $\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$
- (ii) Find the multiplicative inverse of $(\sqrt{2}, -\sqrt{5})$
- (iii) Express the complex number $1+i\sqrt{3}$ in polar form.
- (iv) Write the power set of $\{a, \{b, c\}\}\$
- (v) Show that the statement $p \rightarrow (p \lor q)$ is tautology.
- (vi) Prove that the identity element e in a group G is unique.

(vii) If
$$A = \begin{bmatrix} 1 & -1 \\ a & b \end{bmatrix}$$
 and $A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, find a and b

(viii) If
$$B = \begin{bmatrix} 5 & -2 & 5 \\ 3 & -1 & 4 \\ -2 & 1 & -2 \end{bmatrix}$$
. find cofactor B_{21}

- (ix) If A is a skew-symmetric matrix, then show that A^2 is a symmetric matrix
- (x) Solve $x^{-2} 10 = 3x^{-1}$.
- (xi) If α , β are the roots of $x^2 px p c = 0$ then prove that $(1+\alpha)(1+\beta) = 1-c$
- (xii) Discuss the nature of roots of the equation $x^2 5x + 6 = 0$

3. Write short answers to any EIGHT (8) questions :

(i) Define proper fraction.

(ii) If
$$\frac{x^2 - 10x + 13}{(x - 1)(x^2 - 5x + 6)} = \frac{A}{x - 1} + \frac{B}{x - 2} + \frac{C}{x - 3}$$
, find value of A

(iii) If
$$\frac{x}{(x-a)(x-b)(x-c)} = \frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c}$$
, find value of B

- (iv) If the numbers $\frac{1}{k}$, $\frac{1}{2k+1}$ and $\frac{1}{4k-1}$ are in harmonic sequence, find k
- (v) Find sum of infinite geometric series $2 + 1 + 0.5 + \dots$
- (vi) Define geometric mean.
- (vii) If 5, 8 are two A.Ms between a and b, find a and b

(viii) If
$$\frac{1}{a}$$
, $\frac{1}{b}$ and $\frac{1}{c}$ are in A.P, show that $b = \frac{2ac}{a+c}$

- (ix) Prove that ${}^{n}C_{r} = {}^{n}C_{n-r}$
- (x) Expand $(1+x)^{-1/3}$ upto 3 terms.
- (xi) Evaluate $\sqrt[3]{30}$ correct to three places of decimal.
- (xii) Check whether the statement $5^n 2^n$ is divisible by 3 for n = 2, 3 is true or false.

(Turn Over)

16

16.

4. Write short answers to any NINE (9) questions :

- (i) Find r, when $\ell = 56 \, cm$, $\theta = 45^{\circ}$
- (ii) Find the values of all trigonometric functions for -15π
- (iii) Prove that $\frac{1-\sin\theta}{\cos\theta} = \frac{\cos\theta}{1+\sin\theta}$
- (iv) Express the difference $\cos 7\theta \cos \theta$ as product.
- (v) Prove $\frac{1-\cos\alpha}{\sin\alpha} = \tan\frac{\alpha}{2}$
- (vi) Find the value of cos105° without using calculator.
- (vii) Find the period of $3\sin\frac{2x}{5}$
- (viii) With usual notations prove that $\frac{1}{r} = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}$
- (ix) Define in-circle of the triangle ABC.
- (x) State the law of tangent. (any two)
- (xi) Show that $\cos(2\sin^{-1}x) = 1 2x^2$
- (xii) Solve the equation for $\theta \in [0, \pi]$ $\cot^2 \theta = \frac{4}{3}$
- (xiii) Solve the equation for $\theta \in [0, \pi]$ $2\sin\theta + \cos^2 1 = 0$

SECTION - II

Note: Attempt any THREE questions.

- 5. (a) If G is a group under the operation "*" and $a, b \in G$, find the solutions of the equations: (i) $a \times x = b$ (ii) $x \times a = b$
 - (b) If 7^{th} and 10^{th} terms of an H.P are $\frac{1}{3}$ and $\frac{5}{21}$ respectively, find its 14^{th} term 5
- 6. (a) Show that $\begin{vmatrix} a+\ell & a & a \\ a & a+\ell & a \\ a & a & a+\ell \end{vmatrix} = \ell^2 (3a+1)$
 - (b) Prove that $^{n-1}C_r + ^{n-1}C_{r-1} = {}^{n}C_r$
- 7. (a) If α , β are the roots of $5x^2 x 2 = 0$ form the equation whose roots are $\frac{3}{\alpha}$ and $\frac{3}{\beta}$
 - (b) Use mathematical induction to prove that $n! > n^2$ for integral values of $n \ge 4$.
- 8. (a) A railway train is running on a circular track of radius 500 meters at the rate of 30 km per hour. Through what angle will it turn in 10 sec?
 - (b) Reduce $\sin^4 \theta$ to an expression involving only function of multiples of θ raised to the first power.
- 9. (a) Prove that $r_1r_2 + r_2r_3 + r_3r_1 = s^2$
 - (b) Prove that $\tan^{-1} A + \tan^{-1} B = \tan^{-1} \frac{A + B}{1 AB}$

25-219-II-(Essay Type)-43000

18

5

5

30.com

(To be filled in by the candidate)

MATHEMATICS

(Academic Sessions 2015 – 2017 to 2018 – 2020)

Q.PAPER - I (Objective Type)

219-(INTER PART - I)

Time Allowed: 30 Minutes Maximum Marks: 20

GROUP – II

PAPER CODE = 6194

Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question.

	two or more circles will re-	sult in zero mark in that q	uestion.	
1-1	$\cos\left(\frac{3\pi}{2} - \theta\right)$ is equal t			
	(A) $-\sin\theta$	(B) $\sin \theta$	(C) $\cos \theta$	(D) $-\cos\theta$
2	Probability of impossi	ble event is:		
	(A) $\frac{1}{2}$	(B) 1	(C) 0	(D) 2
3	$2 \tan^{-1} A$ equals :			
	$(A) \tan^{-1}\left(\frac{A}{1-A^2}\right)$			CO
	(C) $\tan^{-1}\left(\frac{2A}{1+A^2}\right)$			
4	Which angle is quadra	intal angle:		
	(A) 45°	(B) 60°	(C) 270°	(D) 120°
5	Solution of equation	$\tan x = \frac{1}{\sqrt{2}}$ lies in the	quadrants :	
	(A) I and II	(B) II and III	(C) I and III	(D) I and IV
6	Middle terms in the expansion of $(x+y)^{11}$ are:			
	(A) T_6, T_7	(B) T_5, T_6	(C) T_7, T_8	(D) T_8, T_9
7	If Δ is the area of a triangle ABC, then with usual notation $\Delta = :$			
	(A) $\frac{1}{2}bc\sin\beta$	(B) $\frac{1}{2}ab\sin\alpha$	(C) $\frac{1}{3}bc\sin\alpha$	(D) $\frac{1}{2}bc\sin\alpha$
8	Range of cotangent fu	nction is:		
ome	(A) N	(B) Z	(C) R	(D) C
9	Expansion of (3-5x			
	(A) $ x < \frac{3}{5}$	* * * * 3	(C) $ x < 5$	(D) $ x < 3$
10	With usual notation F	₹=:		
	(A) $\frac{b}{2\sin\gamma}$	(B) $\frac{a}{2\sin\alpha}$	(C) $\frac{c}{2\sin\alpha}$	(D) $\frac{a}{2\sin\beta}$
11	The sum of the four fourth roots of 81 is:			
	(A) 0	/D) 01	(C) 91	(D) 3

(Turn Over)

	(2)				
1-12	The property $\forall a, b \in \mathcal{R}$, $a = b \Rightarrow b = a$ is called:				
	(A) Commutative (B) Transitive (C) Symmetric (D) Reflexive				
13	The value of 4!.0!.1! is :				
	(A) 0 (B) 1 (C) 4 (D) 24				
14	A square matrix $A = [a_{ij}]$ in which $a_{ij} = 0$ for all $i > j$ is called:				
	(A) Upper triangular (B) Lower triangular				
	(C) Symmetric (D) Skew-symmetric				
	$\sum_{k=1}^{\infty} (1)^k = :$				
	(A) $\frac{n(n-1)}{2}$ (B) $\frac{n}{2}$ (C) n (D) $\frac{n(n+1)}{2}$				
16	If $b^2 - 4ac > 0$ but not a perfect square, then roots are:				
	(A) Equal (B) Complex (C) Rational (D) Irrational				
17	No term of geometric sequence can be:				
	(A) 0 (B) 1 (C) 2 (D) 3				
18	If A and B are two sets, then $A - B = :$				
	(A) $A \cup B^c$ (B) $A \cap B^c$ (C) $(A \cup B)^c$ (D) $(A \cap B)^c$				
19	Partial fractions of $\frac{1}{x^3-1}$ will be of the form:				
	(A) $\frac{A}{x+1} + \frac{Bx+C}{x^2+x+1}$ (B) $\frac{A}{x-1} + \frac{Bx+C}{x^2+x+1}$				
	(C) $\frac{A}{x-1} + \frac{Bx+C}{x^2-x+1}$ (D) $\frac{A}{x+1} + \frac{Bx+C}{x^2-x+1}$				
20	If $A = [a_{ij}]_{2\times 2}$, then $ kA = :$				
	(A) $ A $ (B) $k^2 A $ (C) $k A $ (D) $k A ^2$				

25-219-II-(Objective Type)-10750 (6194)