nswe	r Shee	et No. MATHEM	ATI	CS (OBJECTIV 21/01	VE F	ART)	Г	Roll No.		
		PARI	-1	(INTERMI			_			
gn. D	y. Su	pdnt.		ATK-21 ious Roll No. (For O	ffice	Use)	Sign.	Candidate		
AR BJE ote:-	T – CTIV Writ will	MATICS I) 'E PART) e your Roll No. ir result in loss of restion has four possi	narks	s. All questions a	r wr	Marks : Time : 3 iting, cutting, us be attempted.	20 0 Mi	nutes of lead pencil		
1		ution set of the equ			à.		<u>\-~</u>			
	A	{-2,5}	В	{-2,-5}	C	{2,-5}	D	{2,5}		
2	Par	tial fractions of $\frac{1}{(x)}$	$\frac{3x}{-1)(x}$	$\frac{1}{(c+2)}$ are;		,		-0		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	A	$\frac{1}{x-1} + \frac{2}{x+2}$	В	$\frac{2}{x-1} + \frac{1}{x+2}$	С	$\frac{1}{x-1} - \frac{2}{x+2}$	D	$\frac{2}{x-1} - \frac{1}{x+2}$		
3	A.N	I between x+1 and	(x-1)	is;						
	A	x-1	В	x	C	$\frac{x+1}{2}$	D	$\frac{x-1}{2}$		
4	The	common ratio of a	geon	netric sequence car	nnot	be;				
	A	3	В	00	C	2	D	0		
5	An	infinite geometric s	series	is convergent if;	·			4		
	A	r ≤1	В	r <1	C	r < 2	D	r >1		
6	Tric	Trichotomy is the property of;								
	A	Inequality	В	Equality	C	Division	D	Subtraction		
7	Con	verse of $p \rightarrow q$ is;			,					
	A	$\sim p \rightarrow q$	В	$p \rightarrow \sim q$	C	$q \rightarrow p$	D	$\sim p \rightarrow \sim q$		
8	If a system of linear equations has a unique solution or infinitly many solutions then it can be known as;									
	A	Consistent system	В	Inconsistent system	C	Non-linear system	D	Unique solution		
9	The			•	1 1					
	A	Unit matrix	В	Scalar Matrix	C	Zero matrix	D	Rectangular matrix		
10	If a	polynomial functio	n f(x)	is divided by (x-a)	ther	f(x) is called;				
	A	Divisor	В	Quotient	C	Remainder	D	Dividend		

Page 2 **AJK-2**1

				-JK	-2-)				
11	The	period of $\tan(\frac{x}{3})$	-) is;			×			
	A	π	В	2π	C	3π	D	4π	
12	Num	ber of the elem	ents of a ti	riangle are;				~	
	A	3	В	4	С	6	D	8	
13	In-ra	dius r of a tria	ngle is;						
	A	SΔ	В	$\frac{\Delta}{S}$	С	$\frac{S}{\Delta}$	D	$\frac{4ab}{\Delta}$	
14	$Cos(tan^{-1}(\sqrt{3}))$ is equal to;								
***************************************	A	$\frac{1}{2}$	В	$-\frac{1}{2}$	С	$\frac{\sqrt{3}}{2}$	D	$-\frac{\sqrt{3}}{2}$	
15	If Co.	s(2x) = 0 then s	olution in	1 st quadrant i	s;		<u> </u>		
·	A	30°	В	45°	С	60°	D	15°	
16	$\frac{8!}{6!} = -$						····		
	A	8	В	6	С	50	D	56	
17	The ex	xpansion (1+x)	⁻³ holds w	hen;				-1844-hd	
	A	x > 0	В	x < 1	С	<i>x</i> ≤ 1	D	x < 0	
18	Cos(330°) =								
	A	1/2	В	$\frac{\sqrt{3}}{2}$	С	$\frac{2}{\sqrt{3}}$	D	$\frac{1}{\sqrt{2}}$	
19	If ℓ an	d r are in Cms,	then the t		;				
	A	Radians	В	Degree	C	Cm ²	D	Cm	
20	Sin (21	$(\tau - \theta) = $							
	A	Sin heta	В	$-Sin\theta$	С	$Cos\theta$	D	$-Cos\theta$	
				(The l					

(The End)

MATHEMATICS

21/01

Roll. No.

PAPER: PART-I

INTERMEDIATE

(SUBJECTIVE PART)

MARKS: 80 TIME: 2:30 Hours Note:- Attempt any TWENTY FIVE (25) short questions in all selecting eight from Q. 2 and Q. 3 each and nine from Q. 4. (25 x 2 = 50)

A JK-21

 $(25 \times 2 = 50)$

SECTION - I

	(and the second	
2-	Write short answers of any eight ques	tions.

 $(2 \times 8 = 16)$

ite short answers of any eight questions.		<u></u>
Show that $\forall z_1, z_2 \in C, \ \overline{z_1 z_2} = \overline{z_1} \overline{z_2}$	ii	Find out real and imaginary parts of complex number $(\sqrt{3} + i)^3$
Factorize $a^2 + 4b^2$	iv	For the set $A = \{1,2,3,4\}$ Find the relation $\{(x,y) x+y>5\}$. Also state domain and range of this relation.
Prepare the table of addition of the elements of set of residue classes modulo 4.	vi	Use Venn diagram to verify $(A-B)^C \cap B = B$
Solve the matrix equation for X , 2X - 3A = B If $A = \begin{bmatrix} 1 & -1 & 2 \\ -2 & 4 & 5 \end{bmatrix}$, $B = \begin{bmatrix} 3 & -1 & 0 \\ 4 & 2 & 1 \end{bmatrix}$	viii	Without expansion show that 1
If $A = \begin{bmatrix} 1 & -2 & 3 \\ -2 & 3 & 1 \\ 4 & -3 & 2 \end{bmatrix}$ Find A_{12} and A_{32}	x	Solve $x^{\frac{1}{2}} - x^{\frac{1}{4}} - 6 = 0$
Find four fourth roots of 625.	xii	If α , β are the roots of $3x^2 - 2x + 4 = 0$ Find the value of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$
	Show that $\forall z_1, z_2 \in C$, $\overline{z_1 z_2} = \overline{z_1} z_2$ Factorize $a^2 + 4b^2$ Prepare the table of addition of the elements of set of residue classes modulo 4. Solve the matrix equation for X , $2X - 3A = B$ If $A = \begin{bmatrix} 1 & -1 & 2 \\ -2 & 4 & 5 \end{bmatrix}$, $B = \begin{bmatrix} 3 & -1 & 0 \\ 4 & 2 & 1 \end{bmatrix}$ If $A = \begin{bmatrix} 1 & -2 & 3 \\ -2 & 3 & 1 \\ 4 & -3 & 2 \end{bmatrix}$ Find A_{12} and A_{32}	Show that $\forall z_1, z_2 \in C$, $\overline{z_1 z_2} = \overline{z_1} z_2$ ii Factorize $a^2 + 4b^2$ iv Prepare the table of addition of the elements of set of residue classes modulo 4. Solve the matrix equation for X , $2X - 3A = B$ If $A = \begin{bmatrix} 1 & -1 & 2 \\ -2 & 4 & 5 \end{bmatrix}$, $B = \begin{bmatrix} 3 & -1 & 0 \\ 4 & 2 & 1 \end{bmatrix}$ viii If $A = \begin{bmatrix} 1 & -2 & 3 \\ -2 & 3 & 1 \\ 4 & -3 & 2 \end{bmatrix}$ Find A_{12} and A_{32}

3-

	Write short answers of any eight questions. $(2 \times 8 = 16)$						
Wr	ite snort answers of any eight questions.	- 3					
i	Write $\frac{1}{(x-1)(2x-1)(3x-1)}$ in the form of partial fraction without finding constants.	ij	If $\frac{7x+25}{(x+3)(x+4)} = \frac{A}{x+3} + \frac{B}{x+4}$, then find the value of B.				
iii	If $\frac{1}{a}$, $\frac{1}{b}$ and $\frac{1}{c}$ are in G.P. Show that the common ratio is $\pm \sqrt{\frac{a}{c}}$	iv	Fine the 5the term of G.P. 3,6,12,				
v	Find A.M. between x-3 and x+5	vi	If $a_{n-3} = 2n - 5$ Find the <i>n</i> th term of the sequence.				
vii	What is the probability that a slip of numbers divisible by 4 is picked from the slips bearing numbers	viii	Find the value of n if ${}^{n}C_{12} = {}^{n}C_{6}$				
ix	1,2,3,,10? Evaluate: $\frac{9!}{2!(9-2)!}$	x	Verify the statement $1+2+4++2^{n-1}=2^{n-1}$ for n=2 and n=3				
xi	If x is so small that it square and higher powers can be neglected, then show that $\frac{1-x}{\sqrt{1+x}} \approx 1 - \frac{3}{2}x$	xii	Find the term involving x^{-2} in the expansion of $\left(x - \frac{2}{x^2}\right)^{13}$				

	Pag	ge 2	
	TV		1
١.		,-,	

Wri	te short answers of any nine questions.	-,	$(2 \times 9 = 18)$
i	Convert into radians the 54°45′ s	ii	Find the value of $Cos\theta$ and $tan\theta$, when $Sin\theta = \frac{12}{13}$ and terminal arm of the angle is in quadrant I
iii	Prove that $\frac{Sin\theta}{1 + Cos\theta} + Cot\theta = Co\sec\theta$	iv	Without use of table or calculator, Find the value of Sin(-300°)
v	Prove that $tan(45^{\circ} + A) tan(45^{\circ} - A) = 1$	vi	Express $Sin 5x + \sin 7x$ as a product.
vii	Find the period of $\tan 4x$	viii	Find the measure of greatest angle, if sides of the triangle are 16,20,33.
ix	Find the area of the triangle, whose sides are a=18, b=24, c=30	x	At the top of a cliff 80 m high, the angle of depression of a boat is 120. How for is the boat from the cliff?
хi	Show that $Cos^{-1}\frac{12}{13} = Sin^{-1}\frac{5}{13}$ where domain of the function is $[0, \pi]$	xii	Find the value of the equation, which lies in $[0,2\pi]$, $Secx = -2$
xiii	Solve the trigonometric equation		
	$\tan^2\theta = \frac{1}{3}$		

SECTION - II

Note:	- Att	empt any three questions. $(10 \times 3 = 30)$)
5	а	Show that $\begin{vmatrix} x & 1 & 1 & 1 \\ 1 & x & 1 & 1 \\ 1 & 1 & x & 1 \\ 1 & 1 & 1 & x \end{vmatrix} = (x+3)(x-1)^3$	(05)
	b	Solve the equation $3^{2x-1} - 12.3^x + 81 = 0$	(05)
6	a	Resolve into partial fraction. $\frac{1}{(x-1)^2(x^2+2)}$	(05)
	b	Find the 11 th term of the sequence. $1+i,2,\frac{4}{1+i},$	(05)
	a	A die is thrown twice. What is the probability that the sum of the number of dots shown is 3 or 11.	(05)
7	b	Find the term independent of x in the expansion $\left(\sqrt{x} + \frac{1}{2x^2}\right)^{10}$	(05)
	a	Without using calculator / tables, show that $Cos20^{\circ}Cos40^{\circ}\cos 80^{\circ} = \frac{1}{8}$	(05)
8	b	If $Sin\theta = \frac{12}{13}$ and terminal arm of the angle is in quadrant I, then find the remaining Trigonometric functions.	(05)
	a	Solve the following triangle using first law of tangents and then law of sines. If $b = 14.8$, $c = 16.1$ and $\alpha = 42^{\circ}45'$	(05)
9	b	Prove that $2 \tan^{-1} \left(\frac{2}{3} \right) = Sin^{-1} \left(\frac{12}{13} \right)$	(05)
		(The End)	