

BWP-21

(B)	L.K.No. 1112	Paper	Code No. 6193
(Objective Type)	Inter - A - 2021	Session (20	17 – 19) to (2020 – 22)
30 Minutes	Inter (Part - I)	Marks	20
	(Objective Type)	(Objective Type) Inter – A – 2021	(Objective Type) Inter – A – 2021 Session (20

Note: Four possible choices A, B, C, D to each question are given. Which choice is correct fill that circle in front of that Question No. Use Marker or Pen to fill the circles. Cutting or filling two or more circles will result in Zero Mark in that Question.

Q.No.1 (1)	If Cosx =	$\frac{-\sqrt{3}}{2}$, then its Reference Angle is : (A) $\frac{\pi}{3}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{6}$ (D) $\frac{-\pi}{6}$						
(2)								
	Cos (Sec	(1)) = : (A) 1 (B) 0 (C) 30° (D) 2						
(3)	$\sqrt{\frac{s(s-a)}{bc}}$	$= : \qquad \qquad \text{(A) } \sin \frac{\alpha}{2} \text{(B) } \sin \frac{\beta}{2} \text{(C) } \cos \frac{\beta}{2} \text{(D) } \cos \frac{\alpha}{2}$						
(4)		any Triangle and $\gamma = 90^{\circ}$, then :						
41		A) $a^2 + b^2 = c^2$ (B) $a^2 + c^2 = b^2$ (C) $b^2 + c^2 = a^2$ (D) $a^2 + b^2 + c^2 = 0$						
(5)	Period of	$\sin \frac{x}{5}$ is : (A) 2π (B) $\frac{\pi}{5}$ (C) 10π (D) 5π						
(6)	2 Sin12 ⁰ Si	n46° = : (A) Cos34° Cos58° (B) Sin34° + Sin58° (C) Sin34° - Sin58° (D) Cos34° - Cos58°						
(7)	$\frac{3\pi}{2}$ Radian	s equals to : (A) 120° (B) 150° (C) 270° (D) 190°						
(8)	The Vertex	of an angle in standard form is at :						
(-/								
(9)	In the Expa	(A) $(0,0)$ (B) $(1,0)$ (C) $(0,1)$ (D) $(1,1)$ nsion of $(a+b)^7$, the 2 nd term is : (A) a^7 (B) $7a^6b$ (C) $7ab^6$ (D) $7b^6$						
(10)	$^{n}P_{n} = -$: (A) $n!$ (B) $(n+1)!$ (C) 1 (D) $(n-1)!$						
(11)		Mean between X and y is : (A) $\frac{2(x+y)}{xy}$ (B) $\frac{2xy}{x+y}$ (C) $\frac{x+y}{2xy}$ (D) $\frac{x+y}{2}$						
(12)	The nth te	(A) $\frac{2(x+y)}{xy}$ (B) $\frac{2xy}{x+y}$ (C) $\frac{x+y}{2xy}$ (D) $\frac{x+y}{2}$ erm of the sequence $\frac{1}{3}$, $\frac{2}{5}$, $\frac{3}{7}$, $\frac{4}{9}$ is : (A) $\frac{n}{2n-1}$ (B) $\frac{n}{2n+1}$ (C) $\frac{n}{3n-1}$ (D) $\frac{n}{3n+1}$						
(13)	ine next t	ext two terms of the sequence 1,3,7,15,31 are : (A) 112,288 (B) 122,144 (C) 102,188 (D) 63,127						
(14)	Partial Fractions of $\frac{1}{x(x+1)}$ are =:							
		(A) $\frac{1}{x-1} + \frac{1}{x+1}$ (B) $\frac{1}{x-1} - \frac{1}{x+1}$ (C) $\frac{1}{x} + \frac{1}{x+1}$ (D) $\frac{1}{x} - \frac{1}{x+1}$						
(15)	If α , β are	the roots of the equation $x^2 - 4x + 5 = 0$, then $\alpha\beta$ is equal to :						
	-	(A) 2 (B) 4 (C) 5 (D) -4						
(16)	(a +b)x =	ax + bx is called : (A) Identity (B) Equation (C) Conditional (D) Fraction						
(17)		1 -2 3						
	If A =	$\begin{bmatrix} 1 & -2 & 3 \\ -2 & 3 & 1 \\ 4 & -3 & 2 \end{bmatrix}$, then A_{33} equals: (A) -1 (B) 1 (C) 7 (D) -7						
(18)	$\begin{bmatrix} K & 0 \\ 0 & K \end{bmatrix} $ is	: (A) Zero Matrix (B) Non – Diagonal Matrix (C) Identity Matrix (D) Scalar Matrix						
(19)	If A⊆B	and $B \subseteq A$, then: (A) $A = \emptyset$ (B) $A = B$ (C) $B = \emptyset$ (D) $A \cap B = \emptyset$						
(20)	The Multipl	icative Inverse of Complex Number (0,1) is :						
	•	(A) $(0,-1)$ (B) $(0,1)$ (C) $(-1,0)$ (D) $(0,0)$						

Roll No.	1112 - 2000	Session (2017 - 19)to(2020 - 22)	Inter (Part – I)
Mathematics (Subjective)	Inter - A - 2021	Time 2:30 Hours Marks: 80	

Note: It is compulsory to attempt any (8 - 8) Parts each from Q.No. 2 and Q.No. 3 while attempt any (9) Parts from Q.No. 4. Attempt any (3) Questions from Part - II. Write same Question No. and its Part No. as given in the Question Paper.

Part-I Buso_2

 $25 \times 2 = 50$

		Part - I	B	wp. 21	$25 \times 2 = 50$		
Q.No.2	(i)	Find the Sum and Product of the Compl			6).		
	(ii)	Separate into Real and Imaginary Parts $\frac{2-7i}{4+5i}$ and write as Simple Complex Number.					
	(iii)	For all Complex Numbers Z , show that $Z^2 + \overline{Z}^2$ is a real number.					
	(iv)	Convert the theorem $(A \cap B)' = A' \cup B'$ into logical form and prove by constructing the Truth Table.					
	(v)	If G is a group under the operation * $a * x = b$	and	$1 a, b \in G$, then solve the	ne equation		
	(vi)	Write the Descriptive Form and Tabular Form of the Set $\{x \mid x \in 0 \land 3 < x < 12\}$					
	(vii)	If $A = \begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$ and $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ find the values of a and b .					
	(viii)	4 -3 2					
	(ix)	Find the value of x if	(x)	If α , β are the roots of	$5x^2 - x - 2 = 0$		
		$\begin{vmatrix} 3 & 1 & x \\ 1 & 3 & 4 \\ x & 1 & 0 \end{vmatrix} = -30$		then form an equation w $\frac{3}{\alpha}$ and $\frac{3}{\beta}$	hose roots are		
	(xi)			Solve the Equation 2x4			
Q.No.3	(i)	Write $\frac{3x^2 - 4x - 5}{(x - 2)(x^2 + 7x + 10)}$ in form of Partial Fraction without finding the constants.					
(ii) Write $\frac{x^2}{(x-2)(x-1)^2}$ in form of Partial Fractions with							
	(iii)	Calculate $(2.02)^4$ by means of Binomial Theorem.					
•	(iv)	A die is rolled. What is the Probability that dots on the Top are greater than '4'?					
	(v)	Use Binomial Theorem to expand $(\frac{x}{2} - \frac{2}{x^3})^6$					
	(vi)	Expand $(4-3x)^{\frac{1}{2}}$ upto three terms taking the values of 'x "such that Expansion is valid.					
	(vii)	Find a ₈ of the sequence	(viii)	Sum the Series $\frac{3}{\sqrt{2}} + 2\sqrt{2} + \frac{5}{\sqrt{2}} + \dots$	+ 312		
	(ix)	1,-3,5,-7,9,-11, Find two G.M.'s between 2 and 16.	/v1	V 2 V 2			
	(xi)	Evaluate 20_{P_3}	(x)	Which term of the A.P. 5, 2 If ${}^{n}C_{8} = {}^{n}C_{12}$ f			
Q.No.4	(i)	- 3					
	(ii)	What is the circular measure of the angle between the hands of a watch at 40° Clock? Verify $\cos 2\theta = 2\cos^2 \theta - 1$, when $\theta = 30^\circ, 45^\circ$					
	(iii)	Prove that $\cos^4\theta - \sin^4\theta = \cos^2\theta - \sin^2\theta$ for all $\theta \in \mathbb{R}$					
	(iv)	Find the value of Cos 105°					