Roll No)	(T	o be filled in by the	candidate)	
MATH	EMATICS (Academic SER – I (Objective Type) 221-(Sessions 2017 – 2 INTER PART – I GROUP – I	(019 to 2020 – 2022) Time	2) e Allowed: 30 Minutes imum Marks: 20	
Note:	Four possible answers A, B, C and D to fill that circle in front of that question two or more circles will result in zero	o each question are n with Marker or	e given. The choice of Pen ink in the answe	which you think is correct,	
1-1	If $\begin{vmatrix} k & 4 \\ 4 & k \end{vmatrix} = 0$, then value of k				
	(A) ± 16 (B) 0	(C)	± 4	(D) ±8	
2	Partial fraction of $\frac{1}{x^2-1}$ will be of the form:				
	(A) $\frac{Ax+B}{x^2-1}$ (B) $\frac{A}{x+1}$	$+\frac{B}{x-1}$ (C)	$\frac{A}{x+1}$	(D) $\frac{B}{x-1}$	
3	If H is H.M. between a and b	then H = :			
	(A) $\frac{2ab}{a+b}$ (B) $\frac{a+b}{2ab}$	(C)	$\frac{a+b}{2}$	(D) $\pm \sqrt{ab}$	
4	When $p(x) = x^3 + 4x^2 - 2x + 5$ is divided by $(x - 1)$ then remainder is:				
	(A) 10 (B) -10			(D) -8	
5	The trivial solution of the homogeneous linear equation in three variables is:				
	(A) (0,0,0) (B) (1,			(D) (0,0,1)	
6	The property used in $(a+1) + \frac{3}{4}$	$= a + (1 + \frac{3}{4})$ is :			
	(A) Closure (B) Asso	ciative (C)	Commutative	(D) Additive	
7	The number of roots of polynomial equation $8x^6 - 19x^3 - 27 = 0$ are :				
	(A) 2 (B) 4	(C)	6	(D) 8	
8	If $a_{n-3} = 2n - 5$ then 7 th term is = :				
	(A) 9 (B) 15	(C)	11	(D) 13	
9	For an infinite geometric series of which $ r < 1$ we have $S_{\infty} = :$				
	(A) $\frac{a(1+r)}{1-r}$ (B) $\frac{a}{1+r}$	(C)	$\frac{a}{2r}$	(D) $\frac{a}{1-r}$	
10	The converse of $p \rightarrow q$ is:				
	(A) $\sim p \rightarrow q$ (B) $p \rightarrow q$	~ q (C)	$q \rightarrow p$	(D) $\sim p \rightarrow \sim q$	
11	The middle term in expansion of	of $(a+x)^n$ when	n is even:		
	(A) $\left(\frac{n}{2}+1\right)$ th term (B) $\left(\frac{n}{2}\right)$	-1)th term (9	C) $\left(\frac{n}{2}\right)$ th term	(D) $\left(\frac{n+1}{2}\right)$ th term	

(2) LHR-GL21

1-12	If A is the error of a triangle ADG II					
1 12	11 \(\Delta\) is the area of	If Δ is the area of a triangle ABC then $\Delta = :$				
			(C) $\frac{1}{2}bc\sin\alpha$	(D) $ab \sin \alpha$		
13	$\frac{9\pi}{5}$ rad in degree measure is :					
1.4	(A) 321°	(B) 322°	(C) 323°	(D) 324°		
14	With usual notation	ons, the value of a	+b+c is:			
	(A) s	(B) 2s	(C) 3s	(D) $\frac{s}{2}$		
15	The factorial of a p	oositive integer 'n	is:			
	(A) $n! = n(n-1)!(n-2)!$ (B) $n! = n(n+2)!$					
	(C) $n! = n(n-1)!$	(D) <i>n</i> !	= n(n-2)!			
16	The solution of $1 + \cos x = 0$ if $0 \le x \le 2\pi$ is equal to :					
	(A) {0}	(B) $\left\{\frac{\pi}{2}\right\}$	(C) $\left\{\frac{\pi}{3}\right\}$	(D) $\{\pi\}$		
17	In anti-clockwise direction $\frac{1}{4}$ rotation is equal to:					
10	(A) 90°	(B) 180°	(C) 270°	(D) 45°		
18	The period of $3\cos(\frac{x}{5})$ is:					
	(Α) π	(B) 10π	(C) $\frac{\pi}{10}$	$(D)^{-\frac{\pi}{5}}$		
19	$\sec\left[\cos^{-1}\left(\frac{1}{2}\right)\right] = :$					
	(A) $\frac{1}{2}$	(B) 2	(C) $\frac{\pi}{3}$	(D) $\frac{\pi}{6}$		
20	$\cos 48^{\circ} + \cos 12^{\circ} = :$					
	(A) 2 cos 18°	(B) 3cos18°	(C) $\sqrt{3} \cos 18^{\circ}$	(D) $\sqrt{2}\cos 18^{\circ}$		

(To be filled in by the candidate) Roll No (Academic Sessions 2017 - 2019 to 2020 - 2022) Ÿ Time Allowed: 2.30 hours 221-(INTER PART - I) **MATHEMATICS** Maximum Marks: 80 GROUP - I PAPER – I (Essay Type) SECTION - I WIR. 41-21 16 2. Write short answers to any EIGHT (8) questions : (i) Prove that $\frac{a}{b} = \frac{ka}{kb}$, $k \neq 0$ (ii) Simplify $(5, -4) \div (-3, -8)$ and write the answer as a complex number. (iii) Find the real and imaginary parts of $(\sqrt{3} + i)^3$ (iv) If $B = \{1, 2, 3\}$, then find the power set of B, i.e., P(B)(v) Construct the truth table for the statement : \sim (p \rightarrow q) \leftrightarrow (p \wedge \sim q) (vi) For the set A = $\{1, 2, 3, 4\}$, find a relation in A which satisfy $\{(x, y) | y + x = 5\}$ (vii) Find the matrix X, if 2X - 3A = B and $A = \begin{bmatrix} 1 & -1 & 2 \\ -2 & 4 & 5 \end{bmatrix}$, $B = \begin{bmatrix} 3 & -1 & 0 \\ 4 & 2 & 1 \end{bmatrix}$ (viii) Find A^{-1} if $A = \begin{vmatrix} 5 & 3 \\ 1 & 1 \end{vmatrix}$ (ix) Without expansion, show that $\begin{vmatrix} \alpha & \beta + \gamma & 1 \\ \beta & \gamma + \alpha & 1 \\ \gamma & \alpha + \beta & 1 \end{vmatrix} = 0$ (x) Prove that sum of cube roots of unity is zero i.e., $1 + \omega + \omega^2 = 0$ (xi) Find the numerical value of k, when the polynomial $x^3 + kx^2 - 7x + 6$ has a remainder of -4 when divided by x + 2. (xii) Show that the roots of equation $x^2 + (mx + c)^2 = a^2$ will be equal if $c^2 = a^2(1 + m^2)$ 16 3. Write short answers to any EIGHT (8) questions : (i) Resolve $\frac{4x^2}{(x^2+1)^2(x-1)}$ into partial fractions without finding the constants. (ii) Resolve $\frac{7x+25}{(x+3)(x+4)}$ into partial fractions without finding the constants. (iii) Write the first four terms of the sequence, $a_n = (-1)^n n^2$ (iv) If $a_{n-3} = 2n - 5$, find nth term of the sequence. (v) Insert two G.M's between 2 and 16. (vi) Sum the infinite geometric series $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + ----$ (vii) Find the value of n, when ${}^{11}P_n = 11.10.9$ (viii) Evaluate ${}^{12}C_3$ (ix) A die is rolled. What is the probability that the dots on the top are greater than 4? (x) Check the truth of the statement $1 + 5 + 9 + \dots + (4n - 3) = n(2n - 1)$ for n = 1, 2(xi) Calculate by means of binomial theorem (2.02)⁴ (xii) If x is so small that its square and higher powers can be neglected, then

(Turn Over)

show that $\frac{\sqrt{1+2x}}{\sqrt{1-x}} \approx 1 + \frac{3}{2}x$

8. (a) Two cities A and B lies on the equator, such that their longitudes are 45° E and 25° W respectively. Find the distance between the two cities, taking the radius of the earth as 6400 kms.

(b) Prove that $\frac{\sin \theta + \sin 3\theta + \sin 5\theta + \sin 7\theta}{\cos \theta + \cos 3\theta + \cos 5\theta + \cos 7\theta} = \tan 4\theta$

9. (a) Solve the triangle ABC, if a = 53, $\beta = 88^{\circ}36'$, $\gamma = 31^{\circ}54'$

(b) Prove that $\tan^{-1} \frac{1}{11} + \tan^{-1} \frac{5}{6} = \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{2}$

18

MATHEMATICS

(Academic Sessions 2017 – 2019 to 2020 – 2022)

Q.PAPER - I (Objective Type)

221-(INTER PART – I)

Time Allowed: 30 Minutes

Maximum Marks: 20

GROUP - II Maxim
PAPER CODE = 6194 LHR-G2-21

Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question.

	two or more circles will result in zero mark in that		wor book. Cutting of fining	
1-1	$\tan 2\theta = :$			
	(A) $\frac{2 \tan \theta}{1 + \tan^2 \theta}$ (B) $\frac{\tan \theta}{1 - \tan^2 \theta}$	(C) $\frac{2\tan\theta}{1-\tan^2\theta}$	(D) $\frac{1-\tan^2\theta}{1+\tan^2\theta}$	
2	A die is rolled then n(s) is:			
	(A) 36 (B) 6	(C) 1	(D) 9	
3	$\sin^{-1} A + \sin^{-1} B$ equals :		_(0)	
		B) $\cos^{-1}(AB + \sqrt{1-\frac{1}{2}})$		
	(C) $\sin^{-1}(A\sqrt{1-B^2} + B\sqrt{1-A^2})$ (1	$D) \sin^{-1}(A\sqrt{1-B^2})$	$-B\sqrt{1-A^2}$)	
4	With usual notation & equals to:			
	(A) r (B) θ	(C) r0	(D) 2πr	
5	If $\cos 2x = 0$, then solution in I quadrant is:			
	(A) 30° (B) 60°	(C) 45°	(D) 15°	
6	The middle term in the expansion $(a+x)^n$,	when n is even		
	(A) $\left(\frac{n}{2}+1\right)$ th term (B) $\left(\frac{n}{2}-1\right)$ th term	(C) $\left(\frac{n}{2}\right)$ th term	(D) $\left(\frac{n+1}{2}\right)$ th term	
7	For a triangle ABC with usual notation	$\frac{\left \frac{(s-a)(s-b)}{s(s-c)} \right }{s(s-c)} \text{equal}$	ls:	
	(A) $\tan \gamma$ (B) $\tan \frac{\gamma}{2}$	(C) $\cot \gamma$	(D) $\cot \frac{\gamma}{2}$	
8	The range of $\sin x$ is:			
	(A) $[-1,0]$ (B) $[-1,1]$	(C) $[0, 2]$	(D) $[-2,2]$	
9	An angle is said to be in standard position if its vertex is:			
	(A) (0,0) (B) (0,1)	(C) (1,1)	(D) (1,0)	
10	The circum radius 'R' is equal to:			
	(A) $\frac{abc}{\Delta}$ (B) $\frac{4abc}{\Delta}$	(C) $\frac{\Delta}{s}$	(D) $\frac{abc}{4\Delta}$	
11	If ω is the cube root of unity then $(1+\omega-$	$(-\omega^2)^8 = :$		
	(A) 256 (B) -256	(C) – 256ω	(D) 256ω	

(Turn Over)

(2) LHR-G2-21

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
1-12	If $z = \cos \theta + i \sin \theta$	then $ z $ is equal to:			
	(A) 0	(B) 1	(C) 2	(D) -1	
13	No term of geometr	ric series is :			
	$(A)  \frac{1}{2}$	(B) $\frac{1}{3}$	(C) Zero	(D) 1	
14	The inverse of a square matrix exists if A is:				
	(A) Symmetric	(B) Non-singular	r (C) Singular	(D) Rectangular	
15	The arithmetic mean between $1-x+x^2$ and $1+x+x^2$ is :				
	(A) x+1	(B) $x^2 + 1$	(C) $\frac{x+1}{2}$	(D) $\frac{x^2+1}{2}$	
16	The roots of the equation $ax^2 + bx + c = 0$ are complex if:				
	$(A)  b^2 - 4ac < 0$	$(B)  b^2 - 4ac = 0$	$(C)  b^2 - 4ac > 0$	(D) Both B and C	
17	The geometric mean between $\frac{1}{a}$ and $\frac{1}{b}$ is :				
	(A) $\pm \sqrt{\frac{1}{ab}}$	(B) $\pm \sqrt{ab}$	(C) $\frac{1}{ab}$	(D) <i>ab</i>	
18	Number of ways in which a set can be described as:				
	(A) 1	(B) 2	(C) 3	(D) 4	
19	The given form $(x-4)^2 = x^2 - 8x + 16$ is called:				
	(A) Transidental equation (B) Cubic equation				
		(D) An i			
20	A system of linear e	quations is said to be	inconsistent if the sys	tem has:	
	(A) Many solutions (B) Unique solution				
	(C) No solution	(D) Two solution	ons only		

25-221-II-(Objective Type)-12500 (6194)

(i) Convert 75°6'30" into radians.

(ii) Evaluate 
$$\frac{1-\tan^2(\frac{\pi}{3})}{1+\tan^2(\frac{\pi}{3})}$$

(iii) Prove that 
$$\sec^2 A + \cos ec^2(A) = \sec^2(A)\cos ec^2(A)$$
 where  $(A \neq \frac{n\pi}{2}, n \in z)$ 

(iv) Prove that  $\tan (180^{\circ} + \theta) = \tan \theta$ 

(v) Prove that 
$$\cot(\alpha + \beta) = \frac{\cot \alpha \cot \beta - 1}{\cot \alpha + \cot \beta}$$

(vi) Prove that 
$$\frac{\sin 2\alpha}{1 + \cos 2\alpha} = \tan \alpha$$

(vii) Find the period of 
$$\tan \frac{x}{7}$$

(viii) In 
$$\triangle ABC$$
 if  $\beta = 60^{\circ}$ ,  $\gamma = 15^{\circ}$  and  $b = \sqrt{6}$  then find 'c'.

(ix) In 
$$\triangle$$
ABC if  $a = 34$ ,  $b = 20$  and  $c = 42$ , find angle 'r'.

(x) Show that 
$$r = (s - a) \tan(\frac{\alpha}{2})$$

(xi) Show that 
$$\cos^{-1}(-x) = \pi - \cos^{-1}(x)$$

(xii) Find the value of 
$$\sec\left(\sin^{-1}(-\frac{1}{2})\right)$$

(xiii) Find the solution of  $\cos ec\theta = 2$  which lie in  $[0, 2\pi]$ 

## SECTION - II

## Note: Attempt any THREE questions.

$$2x + 2y + z = 3$$

5. (a) Solve the system of equations by Cramer's rule 
$$3x - 2y - 2z = 1$$
  
 $5x + y - 3z = 2$ 

(b) Solve the system of equations 
$$2x - y = 4$$
;  $2x^2 - 4xy - y^2 = 6$ 

6. (a) Resolve 
$$\frac{x-1}{(x-2)(x+1)^3}$$
 into partial fraction.

(b) Find four A.Ms between 
$$\sqrt{2}$$
 and  $\frac{12}{\sqrt{2}}$ 

7. (a) Find the values of n and r when 
$${}^{n}C_{r} = 35$$
 and  ${}^{n}P_{r} = 210$ 

(b) Find the term involving 
$$x^4$$
 in the expansion of  $(3-2x)^7$ 

8. (a) Prove that 
$$\frac{1+\cos\theta}{1-\cos\theta} = (\cos ec\theta + \cot\theta)^2$$

(b) Prove that 
$$\frac{\cos 3\theta}{\cos \theta} + \frac{\sin 3\theta}{\sin \theta} = 4\cos 2\theta$$

9. (a) Prove that 
$$(r_1 + r_2) \tan(\frac{\gamma}{2}) = c$$

(b) Prove that 
$$\sin^{-1} \frac{5}{13} + \sin^{-1} \frac{7}{25} = \cos^{-1} \frac{253}{325}$$

25-221-II-(Essay Type)-50000

Roll No (To be filled in by the candidate) (Academic Sessions 2017 - 2019 to 2020 - 2022)

**MATHEMATICS** PAPER – I (Essay Type)

221-(INTER PART – I)

Time Allowed: 2.30 hours

GROUP - II Maximum Marks: 80

SECTION - I

16

2. Write short answers to any EIGHT (8) questions :

- (i) Separate into real and imaginary parts  $\frac{2-7i}{4+5i}$
- (ii) Prove that for  $\forall z \in c$   $z, \overline{z} = |z|^2$
- (iii) Find out real and imaginary parts of complex number  $(\sqrt{3} + i)^3$
- (iv) If G be a group and  $a, b \in G$ , then show that  $(ab)^{-1} = b^{-1}a^{-1}$
- (v) Give a table for addition of elements of the set of residue classes modulo 5.
- (vi) Show that  $(p \land q) \rightarrow p$  is a tautology.
- (vii) Find x and y if  $\begin{bmatrix} x+3 & 1 \\ -3 & 3y-4 \end{bmatrix} = \begin{bmatrix} y & 1 \\ -3 & 2x \end{bmatrix}$
- (viii) Find the inverse of  $\begin{vmatrix} -2 & 3 \\ -4 & 5 \end{vmatrix}$
- (ix) Without expansion verify that  $\begin{vmatrix} \frac{1}{a} & \frac{1}{b} & \frac{1}{c} \\ \frac{1}{a} & \frac{1}{b} & \frac{1}{c} \end{vmatrix} = 0$
- (x) Convert  $x^{\frac{1}{2}} x^{\frac{1}{4}} 6 = 0$  into quadratic equation.
- (xi) Evaluate  $(-1+\sqrt{-3})^5 + (-1-\sqrt{-3})^5$
- (xii) Discuss the nature of the roots of  $2x^2 5x + 1 = 0$

## 3. Write short answers to any EIGHT (8) questions :

16

- (i) Write  $\frac{1}{(1-ax)(1-bx)(1-cx)}$  into partial fraction without finding the values of constants A, B and C.
- (ii) Write  $\frac{4x^2}{(x^2+1)^2(x-1)}$  into partial fraction without finding the values of unknown constants.
- (iii) If  $a_{n-3} = 2n 5$ , find nth term of the sequence.
- (iv) Find G.M. between -2i and 8i.
- (v) If the numbers  $\frac{1}{k}$ ,  $\frac{1}{2k+1}$ ,  $\frac{1}{4k-1}$  are in H.P. find the value of k.
- (vi) Find A, G and H if a = 2i, b = 4i
- (vii) Find the value of n when  ${}^{n}P_{2} = 30$
- (viii) Find the number of the diagonals of a 6-sided figure.
- (ix) A die is rolled. What is the probability that the dots on the top are greater than 4?
- (x) Calculate (9.98)⁴ by using binomial theorem.
- (xi) Expand  $(4-3x)^{1/2}$  upto 4 terms by using binomial theorem.
- (xii) Evaluate  ${}^{12}C_2$