* ****** question with Marker or pen ink on the answer sheet provided. question are given. Which answer you consider correct, fill the corresponding circle A.B.C or D given in front of each NOTE. Write answers to the questions on objective answer sheet provided. Four possible answers A,B,C & D to each 1-1. Multiplicative identity of complex number is: Time: 30 Minutes Mathematics (Objective Type) 10. nth term of A.P is: 3. If A and B are any two non singular matrices then $\left(AB\right)^{-1}=$ 2. The contrapositive of $\sim p \rightarrow \sim q$ is: 9. $(n+1)^m$ term of G.P is: 4. For a non-singular matrix A if X A=B then X=5. If $f(x) = 3x^4 + 4x^3 + x - 5$ is divided by x + 1, then remainder is: 8. If $a_n = (-1)^{n+1}$, then 26th term is: 7. Partial fraction of $(x^2+1)(x+3)$ will be of the form (A) $a_1 r^{n-1}$. If w is one root of unity, then w^{15} = (A) A-1B-1 (A) $A^{-1}B$ (A) $p \rightarrow q$ (A) $a_1(n-1)d$ (B) $a_1 + (n+1)d$ (B) 7 **(B)** $B^{-1}A^{-1}$ **②** BA-1 $\bigoplus_{q \leftarrow p} q \rightarrow p$ (B) (0,1) (B) $\frac{A}{x^2+1} + \frac{Bx+C}{x+3}$ 01 (For all sessions) Inter. (Part-I)-A- 2021 (C) a, r"+2 (C) BA (C) 6 (C) $(AB)^{-1}$ (C) 26 0 (c) $2a_1 + (n-1)d$ (C) ₹ **(1,0)** (C) ~ q → ~ p $\frac{Ax+B}{x+3} + \frac{C}{x^2+1}$ Paper Code $(D) \sim q \rightarrow p$ (a) r" (D) $\frac{A}{x^2+1} + \frac{B}{x+3}$ (D) $(BA)^{-1}$ (D) $a_1 + (2n-1)d$ (D) AB (D) 0 -7 (D) -26 (D) (1,1) カラウ・サー 11. With usual notation $C_r + C_{r-1} =$ 12. In the expansion of $(a+b)^7$, the s 18. With usual notation a+b-c=14. $3\frac{\pi}{4}$ radian is equal to: 17. Radius of escribed circle opposite to vertex C is: 16. Period of sin x is: $15. \sin(-300^{\circ}) =$ 13. In one hour, the hour hand of a clock 20. Solution of $\cot \theta = \frac{1}{\sqrt{3}}$ in quadrant III is: 19. 2 tan-1 A = (A) a⁷ (A) D ± C ≥ (§ (A) $-\frac{\sqrt{3}}{2}$ (A) 110⁰ **(**€ ∞ | ≈ (A) $(A) \frac{5\pi}{3}$ CC. **a** 2s+2c (8) $7\frac{\pi}{6}$ (B) 2π **(B)** 135° (B) # @ 7a"b **@** √5 (B) A-b furns through an angle. nd term is: 821-11-A-☆ (C) 7ab* و <u>آ</u>م<u>آ</u> (C) 2S-2b (C) 150⁰ @ 6|2 **©** [△] [△] (C) $\tan^{-1} \frac{A}{1-A^2}$ (C) 3π (D) 2S-c(D) -# (D) 130° (D) B 了 で 夏 (D) s | D (D) 2| % 000 (D) $\tan^{-1} \frac{A}{1+A^2}$ 60

(For all sessions)

Mathematics (Essay Type)

Time: 2:30 Hours

QwP-21

Section -I

2x8=16

Marks: 80

2. Write short answers of any eight parts from the following.

i. Seperate into real and imaginary parts $\frac{2-7i}{4+5i}$. ii. Factorize $3x^2+3y^2$

iii. Simplify (2,6)(3,7)

iv. Let $A = \{1, 2, 3, 4\}$, Find the relation $\{(x, y) / x + y < 5\}$ in A

v. Write the inverse and converse of $p \rightarrow q$ vi. Find the value of x if $\begin{vmatrix} 3 & 1 & x \\ -1 & 3 & 4 \\ x & 1 & 0 \end{vmatrix} = -30$

vii. Find the condition that one root of $x^2 + px + q = 0$ is multiplicative inverse of other

viii. Evaluate $(1+w+w^2)(1-w+w^2)$

ix. Solve the equation ax = b where a,b are the elements of a group G

x. Discuss the nature of roots of the equation $2x^2 - 5x + 1 = 0$.

xi. If $A = \begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$ and $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ then find the values of a and b.

xii. If A and B are square matrices of the same order, then explain why in general $(A+B)(A-B) \neq A^2-B^2$.

3. Write short answers of any eight parts from the following.

2x8=16

i. Which term of the A.P., -2,4,10,......is 148?

ii. Insert three G.M's between 1 and 16.

iii. Write in factorial form $\frac{(n+1)(n)(n-1)}{321}$. iv. Find the value of n, when $P_4 : P_3^{n-1} = 9:1$

v. If 5 is the harmonic mean between 2 and b, find b. vi. Find the number of diagonals of a 6-sided figure.

vii. Evaluate $\sqrt[3]{30}$ correct to two places of decimals. viii. Expand by binomial theorem $\left(\sqrt{\frac{a}{x}} - \sqrt{\frac{x}{a}}\right)^{-1}$

ix. Resolve into partial fractions $\frac{7x+25}{(x+3)(x+4)}$.

x. Resolve into partial fractions without finding the constants $\frac{9x-7}{(x^2+1)(x+3)}$

xi. If $\frac{1}{a}$, $\frac{1}{b}$ and $\frac{1}{c}$ are in G.P., show that the common ratio is $\pm \sqrt{\frac{a}{c}}$.

xii. Check whether, $1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{n-1}} = 2\left(1 - \frac{1}{2^n}\right)$ is true for n = 1, 2.

4. Write short answers of any nine parts from the following.

2x9=18

i. Prove that $\sec^2\theta - \cos ec^2\theta = \tan^2\theta - \cot^2\theta$ ii. Find the values of $\cos 105^0$ taking $\left(105^0 = 45^0 + 60^0\right)$

iii. Prove that
$$\frac{\sin 8x + \sin 2x}{\cos 8x + \cos 2x} = \tan (5x)$$
. Find the period of $\tan (4x)$.

v. Show that
$$\gamma = (s-c)\tan\left(\frac{\gamma}{2}\right)$$
.

vi. In
$$\triangle ABC$$
 a=3,b=6 and B=36 0 20' Find "b".

vii. Find area of
$$\triangle ABC$$
 if a=18, b=24 and c=30

vii. Find area of
$$\triangle ABC$$
 if a=18, b=24 and c=30. viii. Find the value of $\cos^{-1}\left(\frac{-1}{2}\right)$

ix. Solve the equation
$$1 + \cos x = 0$$

x. Find the soln of equation
$$\sec x = -2$$
 which lies in $[0,2\pi]$.

xi. What is the circular measure of the angle between the hands of a watch at 4 'o' clock.

xii. Find the values of remaining trigonometric functions when $\cos \theta = \frac{9}{41}$ and the terminal arm of the angle is in quad ly

xiii. If α , β and γ are angles of a triangle ABC then prove that $\tan(\alpha + \beta) + \tan \gamma = 0$

Section -II

Note: Attempt any three questions from the following.

10x3=30

5. (a) If
$$A = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}$$
 verify that $(A^{-1})^t = (A^t)^{-1}$

(b) Solve the system of equations
$$x + y = 5$$
; $\frac{2}{x} + \frac{3}{y} = 2$.

6. (a) Resolve
$$\frac{1}{(1-ax)(1-bx)(1-cx)}$$
 into partial fractions.

(b) For what value of
$$n$$
, $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ is the positive Geometric Meam (G.M) between a and b.

7. (a) Prove that
$$C + C = C$$

(b) If
$$x$$
 is so small that its cube and higher powers can be neglected then show that $\sqrt{\frac{1+x}{1-x}} \approx 1+x+\frac{1}{2}x^2$.

8. (a) Two cities A and B lie on the equator such that their longitudes are 45 E and 25 W respectively. Find the distance between two cities, taking radius of earth as 6400 kms.

(b) Show that
$$\cos(\alpha + \beta)\cos(\alpha - \beta) = \cos^2\alpha - \sin^2\beta = \cos^2\beta - \sin^2\alpha$$

9. (a) The sides of a triangle are $x^2 + x + 1$, 2x + 1 and $x^2 - 1$. Prove that the greatest angle of the triangle is 120° .

(b) Prove that
$$2 \tan^{-1} \left(\frac{1}{3} \right) + \tan^{-1} \left(\frac{1}{7} \right) = \frac{\pi}{4}$$