Time:	HEMATICS 30 Minutes	Intermediate Part-I, C OBJE(TIVE	
Note:	You have four che correct, fill that ci filling two or mor	Code: oices for each objective type of rele in front of that question re e circles will result in zero m	question as A, B, C and D	The choice which you think is en to fill the circles. Cutting or
1- 1-	The multiplicat $(0,-1)$	ive inverse of complex num (B) (-1,0)	nber (0, 1) is (C) (1,0)	(D) (1,1)
2-	Converse of $p - (A) \sim p \rightarrow q$	$\rightarrow q$ is (B) $p \rightarrow \sim q$	\bigcirc $q \rightarrow p$	$(D) \sim q \rightarrow p$
3-	$(A^{-1})^t =$			(-) - 4 - p
4-	(A) A	(B) -A ^t	(C) $A^{-1}A^{t}$	
5-	(A) (1,0)	ion of the system $a_1x + b_1y = (B)$ (0,1)	= 0 and $a_2x + b_2y = 0$ (0,0)	(D) (1,1)
<i>J</i> -	(A) 1	ourth roots of unity is (B) -1	© 0	(D) i
6-	Roots of the equa	ation $ax^2 + bx + c = 0$ are rea		
7-	(A) $b^2 - 4ac = 0$ A relation in whi	- 14020	(C) $b^2 - 4ac < 0$	(D) $a^2 - 4ac > 0$
	identity,	ch the equality is true for a (B) equation	ny value of unknowns i (C) fraction	s called (D) conditional
8- 9-	The sequence 3, (A) A.P.	(B) G.P.	(C) H.P.	(D) infinite
7-	Harmonic mean $\frac{5}{21}$	Detween 3 and 7 is	(C) 5	(D) 21
10-	Factorial form of (A) $\frac{n!}{(n-1)!}$	n (n-1) (n-2) =	n!	n!
		` '	$\binom{n!}{(n-3)!}$	(D) $\frac{n!}{(n+3)!}$
11-	If A and B are ind	ependent events and P(A) =	= 0.8, $P(R) = 0.7$ then I	$P(A \cap B) =$
	(A) 0.56	$(B) \frac{8}{7}$	(C) $\frac{7}{8}$	(D) 0.1
12-	(A) 1	ents of a and b in every terr (B) 0	n of the expansion of (a (C) 2n	$(a+b)^n$ is $(b)^n$ in
13-	The expansion of	$(1+2x)^{-3}$ is valid only if		
	(A) $ x < 2$	\bigcirc $ \mathbf{x} < \frac{1}{2}$	(C) $ x < \frac{1}{3}$	0
14- 15-	If length of arc and (A) degree Cos 2α =	radius of circle are measur B radians	red in cm then unit of Q (C) cm ²	(D) cm
	(A) $2\cos^2\alpha + 1$	$^{\textcircled{B}}$ $^{2\text{Cos}^2}\alpha$ 1	(C) $2\sin^2\alpha - 1$	(D) $2\sin^2\alpha + 1$
		(2)	(10)-11	
16-	(A) domain	ive number P for which f((B) co-domain	(C) range	period
17-	(A) $a^2 + c^2 - 2ac$ (C) $b^2 + c^2 - 2bc$	cCosα	(D) $a^2 + b^2 - 2a$	
18-	Point of intersect (A) circum-cent	ion of the angle bisectors of	of a triangle is called (C) ex-centre	(D) ortho-centre
19-	$2Tan^{-1}A = $. 24	6)1(2A	(D) $Tan^{-1}\left(\frac{2A}{A}\right)$
		(B) $Tan^{-1} \frac{2A}{1+A^2}$	(C) Tan^{-1} $1-A$	$(D) Tan^{-1} \left(\frac{2A}{2 - A^2} \right)$
		= 0 then x =		

ATHEMATICS

Intermediate Part-I, Class 11th (1stA 323)

PAPER: I

GROUP - I Marks: 80

Note: Section-I is compulsory. Attempt any three (3) questions from Section-II.

SECTION-I

2. Write short answers to any EIGHT questions:

 $(2 \times 8 = 16)$

- i- Check the closure property with respect to multiplication on the set $\{-1, 1\}$
- ii- Simplify the complex numbers (5, -4) (-3, -2)
- iii- Write down the descriptive and tabular form of $\{x \mid x \in P \land x < 12\}$
- iv- Verify commutative property of union and intersection for sets $A = \{1,2,3,4,5\}$, $B = \{4,6,8,10\}$
- v- Write down the inverse and contrapositive of the conditional $\sim p \rightarrow q$

vi- Find x and y if
$$\begin{bmatrix} x+3 & 1 \\ -3 & 3y-4 \end{bmatrix} = \begin{bmatrix} y & 1 \\ -3 & 2x \end{bmatrix}$$

- vii- If A and B are non-singular matrices. Then show that $(AB)^{-1} = B^{-1}A^{-1}$
- viii- Without expansion show that $\begin{vmatrix} \alpha & \beta + \gamma & 1 \\ \beta & \gamma + \alpha & 1 \\ \gamma & \alpha + \beta & 1 \end{vmatrix} = 0$
- ix- Solve the equation $x^2 7x + 10 = 0$ by factorization.
- x- Reduce $2x^4 3x^3 x^2 3x + 2 = 0$ into quadratic form.
- xi- Solve the equation $x^{1/2} x^{1/4} 6 = 0$
- xii- Define reciprocal equation.

3. Write short answers to any EIGHT questions:

 $(2 \times 8 = 16)$

- i- Resolve into partial fractions of $\frac{x^2+1}{(x-1)(x+1)}$ without finding values of constants.
- ii- Write down next two terms of sequence -1, 2, 12, 40,
- iii- Insert two G.Ms. between 1 and 8
- iv- Find nth term of $\frac{1}{2}$, $\frac{1}{5}$, $\frac{1}{8}$,
- v- Prove that $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$
- vi- If 5, 8 are two A.Ms. between a and b. Find a and b.
- vii- Find the value of n^{-1} when ${}^{n}P_{4}$: ${}^{n-1}P_{3} = 9:1$
- viii- How many arrangements of letters of word PAKPATTAN, taken all together, can be made?
- ix- Two dice are thrown twice. What is probability that sum of dots shown in first throw is 7 and that of second throw is 11?
- x- Show that in-equality $4^n > 3^n + 4$ holds for n = 2, n = 3
- xi- Using binomial theorem, expand (a+2b)⁵
- xii- Expand up to 4 terms, taking the value of x such that expansion is valid: $(8-2x)^{-1}$

4. Write short answers to any NINE questions:

 $(2 \times 9 = 18)$

- i- What is the length of the arc intercepted on a circle of radius 14cm by the arms of central angle of 45°?
- ii- Verify that $\sin^2 \frac{\pi}{6} : \sin^2 \frac{\pi}{4} : \sin^2 \frac{\pi}{3} : \sin^2 \frac{\pi}{2} = 1 : 2 : 3 : 4$
- iii- Prove that $\frac{\sin \theta}{1 + \cos \theta} + \cot \theta = \csc \theta$
- iv- Without using table, find the value of tan(-135°)

O

(Turn Over)

- vi- Prove that $\frac{1-\cos\alpha}{\sin\alpha} = \tan\frac{\alpha}{2}$
- Find the period of Cot 8x
- When the angle between the ground and the sun in 30°, flag pole casts a shadow of 40 m long. viii-Find the height of the top of the flag.
- Find the smallest angle of the triangle ABC when a = 37.34, b = 3.24, c = 35.06ix-
 - Find the area of the triangle ABC when a=200, b=120, $\gamma=150^\circ$
- Show that $Sin(2Cos^{-1}x) = 2x\sqrt{1-x^2}$
- Find the solution set of Sinx.Cosx = $\frac{\sqrt{3}}{4}$
- Find the solution of Sinx = $\frac{1}{2}$ in $[0, 2\pi]$

SECTION-II

Note: Attempt any three (3) questions.

- 5 (a) Use matrices to solve the system of equations $2x_1 + x_2 + 3x_3 = 3$ $x_1 + x_2 - 2x_3 = 0$ $-3x_1 - x_2 + 2x_3 = -4$ 5 **(b)** Solve the equation $\left(x - \frac{1}{x}\right)^2 + 3\left(x + \frac{1}{x}\right) = 0$
- 6- (a) Resolve $\frac{x^2+1}{x^3+1}$ into partial fraction. (b) A die is thrown. Find the probability that the dots on the top are prime numbers or odd numbers. 5
- (a) For what value of n, $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ is the positive geometric mean between a and b?
 - **(b)** If $y = \frac{2}{5} + \frac{1 \cdot 3}{2!} \left(\frac{2}{5}\right)^2 + \frac{1 \cdot 3 \cdot 5}{3!} \left(\frac{2}{5}\right)^3 + \dots$ then prove that $y^2 + 2y 4 = 0$
- (a) Prove that $\sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = \sec\theta \tan\theta$, where θ is not an odd multiple of $\frac{\pi}{2}$ 5
 - (b) If $-\alpha + \beta + \gamma = 180^{\circ}$, show that $\cot \alpha \cot \beta + \cot \beta \cot \gamma + \cot \gamma \cot \alpha = 1$
- 5 (a) Using law of tangents, solve the $\triangle ABC$ in which a = 36.21, b = 42.09 and $\gamma = 44^{\circ}29^{\circ}$ 5
 - **(b)** Prove that $2 \tan^{-1} \left(\frac{1}{3} \right) + \tan^{-1} \left(\frac{1}{7} \right) = \frac{\pi}{4}$

213-1st A323-30000

5

5

214-(I)- 1st A 323-29000

MATHEMATICS

Intermediate Part-I, Class 11th (1st A 323) PAPER: I SUBJECTIVE

GROUP: II Marks: 80

Time: 2:30 hours

Note: Section-I is compulsory. Attempt any three (3) questions from Section-II

SECTION-I

Write short answers to any EIGHT questions:

Cioj-11-2-23

 $(2 \times 8 = 16)$

State the DeMoiver's theorem.

Factorize 9a²+16b² ii-

Write down two proper subsets of $\{0, 1\}$

Construct truth table $(p \rightarrow \sim p) \lor (p \rightarrow q)$

Define unary and binary operations.

Find matrix X if $\begin{bmatrix} 5 & 2 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 12 & 3 \end{bmatrix}$

Solve the following system of linear equations $3x_1 - x_2 = 1$, $x_1 + x_2 = 3$

If $A = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}$, verify that $(A^{-1})^t = (A^t)^{-1}$

Solve the equation $x^{2/5} + 8 = 6x^{1/5}$

Find four fourth roots of 16 X-

Discuss the nature of the roots of a quadratic equation $x^2 + 2x + 3 = 0$ xi-

When the polynomial $x^3 + 2x^2 + kx + 4$ is divided by x - 2, the remainder is 14. Find the value of k

Write short answers to any EIGHT questions:

 $(2 \times 8 = 16)$

i- Define rational fraction.

Write down the first four terms of the sequence, if $a_n = n \cdot a_{n-1}$, $a_1 = 1$

Find the 13th term of the sequence x, 1, 2-x, 3-2x,

Find the nth term of geometric sequence, if $\frac{a_5}{a_3} = \frac{4}{9}$ and $a_2 = \frac{4}{9}$

Sum to n terms of the series $3 + 33 + 333 + \dots$

Find the 9th term of H.P. $\frac{1}{3}$, $\frac{1}{5}$, $\frac{1}{7}$,

vii- Prove that ${}^{n}C_{r} = {}^{n}C_{n-r}$

What is the probability that a slip of numbers divisible by 4 is picked from the slips bearing numbers 1, 2, 3,, 10?

ix- If sample space $S=\{1, 2, 3, \dots, 9\}$, event $A=\{2, 4, 6, 8\}$ and event $B=\{1, 3, 5\}$. Find P(A U B)

Prove by mathematical induction $r+r^2+r^3+\dots+r^n=\frac{r(l-r^n)}{l-r}$, $r\neq 1$

Find the 6th term in the expansion of $\left(x^2 - \frac{3}{2x}\right)^{10}$

xii- Evaluate $\sqrt[3]{30}$ correct to three places of decimal.

 $(2 \times 9 = 18)$

Write short answers to any NINE questions:

i- Write down any two fundamental trigonometric identities.

ii- In which quadrant the terminal arm of the angle lie when $Sin\theta < 0$ and $Cos \; \theta > 0$

Verify $Sin60^{\circ}Cos30^{\circ} - Cos60^{\circ}Sin30^{\circ} = Sin30^{\circ}$

Prove that $\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha$

Prove that $\cot \alpha - \tan \alpha = 2 \cot 2\alpha$

vi- Express $Sin(x + 30^{\circ}) + Sin(x - 30^{\circ})$ as product.

(Turn Over)

(2)

Cuj-11-2-23

- vii- Write domain and range of Sinθ
- viii- A ladder leaning against a vertical wall makes an angle of 24° with the wall. Its foot is 5m from the wall. Find its length.
- ix- Find the area of the triangle ABC, if a = 18, b = 24, c = 30
- x- Prove that $r_1 r_2 r_3 = rs^2$
- xi- Show that $Cos^{-1}(-x) = \pi Cos^{-1}x$
- xii- Find the value of $Sin\left(Cos^{-1}\frac{\sqrt{3}}{2}\right)$
- xiii- Prove the identity $Sin^{-1}x = \frac{\pi}{2} Cos^{-1}x$

SECTION-II

Note: Attempt any three (3) questions.

- 5- (a) Reduce the matrix $\begin{bmatrix} 2 & 3 & -1 & 9 \\ 1 & -1 & 2 & -3 \\ 3 & 1 & 3 & 2 \end{bmatrix}$ into echelon form
 - (b) Solve the equation $(x+4)(x+1) = \sqrt{x^2 + 2x 15} + 3x + 31$
- 6- (a) Resolve $\frac{(x-1)(x-3)(x-5)}{(x-2)(x-4)(x-6)}$ into partial fractions.
 - (b) Find the values of n and r, when ${}^{n}C_{r} = 35$ and ${}^{n}P_{r} = 210$
- 7- (a) Find n so that $\frac{a^{n+1} + b^{n+1}}{a^n + b^n}$ may be H.M. between 'a' and 'b'.
 - (b) Use mathematical induction to prove the formula for every positive integer n $1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{n-1}} = 2 \left[1 \frac{1}{2^n} \right]$
- 8- (a) If $\csc \theta = \frac{m^2 + 1}{2m}$ and $m > 0 \left(0 < \theta < \frac{\pi}{2} \right)$,
 - Find values of remaining trigonometric ratios.

 (b) Prove that $\sin 10^{\circ} \sin 30^{\circ} \sin 50^{\circ} \sin 70^{\circ} = \frac{1}{16}$
- 9- (a) Prove that $\Delta = 4Rr \cdot Cos \frac{\alpha}{2} \cdot Cos \frac{\beta}{2} \cdot Cos \frac{\gamma}{2}$
 - **(b)** Prove that $\sin^{-1} \frac{1}{\sqrt{5}} + \cot^{-1} 3 = \frac{\pi}{4}$

214-1st A 323-29000