			23 (1 st -A)	61			
		INTERMEDIATI			Roll No:		
			ROUP-I		11-1-23		
	ME ALLOWED		OBJECT	-0.0	AXIMUM MA		
Q.No.1 You have four choices for each objective type question as A, B, C and D. The choice which you think i correct, fill that bubble in front of that question number, on bubble sheet. Use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question.						r pen to fill	
S.# 1		ESTIONS	A	B	C	D	
1	The set $\{1, -1\}$ poperty under:	ossess ciosure	Multiplication	Addition	Subtraction	Division	
2		ement then $p \land \sim p$ is:	Tautology	Absurdit		Conditional	
3		unit matrix has value:	Greater than 1	Less than	1 1	Zero	
4		A is $m \times n$ and order p then order of matrix	$m \times n$	$n \times m$	$m \times p$	$p \times m$	
5	Reciprocal equation when X' is replace		- X	T X	$\frac{1}{X^2}$	$\frac{1}{X}$	
6	If ω is a cube root $1 + \omega^{28} + \omega^{29}$ is eq	-	Zero	1	ω	ω^2	
7	$\frac{x^2 + 1}{Q(x)}$ will be propof $Q(x)$ is equal	per fraction if degree to:	0	1	2	3	
8	(n+1)th term of a		$a_1+(n-1)d$	$a_1-(n-1)$	$a_1 + nd$	$a_1 - nd$	
9	If A, G, H have the a and b are positive numbers and $G > 0$	ve distinct real	A G H	G < I	H H>G>A	G > H > A	
10	In how many ways, seated at a round tal		23	24 4	25	26	
11	With usual notation			* 1C,	ⁿ C _r	$^{n-1}C_r$	
12	Number of terms in $(1+x)^{2n+1}$, 'n' is p	TOTAL STATE OF THE	2 <i>n</i> + 2	2 <i>n</i> + 1	2 <i>n</i>	3 <i>n</i> + 1	
13	In equality $n! > 2^n$	- Lis valid II.	n < 4	<i>n</i> ≥ 4	n = 3	n < 3	
4	$\frac{\pi}{2}$ is an angle:		Acute	Obtuse	Quadrental	Non- quadrental	
5	$\tan(\alpha - 90^{\circ})$ is eq	ual to:	$\cot \alpha$	$-\cot \alpha$	$\tan \alpha$	$-\tan \alpha$	
6	Period of $3\sin 3x$ is	3:	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	π	
7	If α , β , γ are any triangle then it must		$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	$\gamma = 90^{\circ}$	No angle is 90°	
8	If ABC is right tria cosines reduces to:	angle then law of	Pythagoras theorem	Law of Sines	Area of triangle	Law of tangents	
9	$y = \cos x$ is one to interval:		$\left[0,\frac{2\pi}{3}\right]$	$[0,2\pi]$	[0,∞]	[0, π]	
20	If $\cos 2x = 0$ then quadrant is:	solution in first	30°	45°	60°	15°	
لـــــــــــــــــــــــــــــــــــــ	13(Obj)(★)-2023(1 st -A)-17000 (MULTAN)						

	INTERMEDIATE PART-I (11 th Class) 2023 (1 st -A) Roll No:				
MATHEMATICS PAPER-I GROUP-I					
TIME	ALLOWED: 2.30 Hours SUBJECTIVE MAXIMUM MARKS: 80				
NOTE:	Write same question number and its parts number on answer book, as given in the question paper. SECTION-1				
2 444	empt any eight parts. $8 \times 2 = 16$				
(i)	Simplify as a simple complex number $(5, -4)(-3, -2)$ (ii) Express the complex number $1 + i\sqrt{3}$ in polar form.				
	Express the complex number 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
(iii)	Write the descriptive and tabular form of $\{x x \in N \land x + 4 = 0\}$				
(iv)	For the sets $A = \{1, 2, 3, 4, 5\}$, $B = \{4, 6, 8, 10\}$ verify the commutative property of intersection.				
(v)	Show that the statement $\sim (p \to q) \to p$ is a tautology. (vi) If $A = \begin{bmatrix} i & 0 \\ 1 & -i \end{bmatrix}$, show that $A^4 = I_2$				
	$\begin{bmatrix} 1 & -i \end{bmatrix}$				
(vii)	Without expansion show that $\begin{vmatrix} 2 & 3 & -1 \\ 1 & 1 & 0 \\ 2 & -3 & 5 \end{vmatrix} = 0$ (viii) Find the value of λ if matrix $A = \begin{bmatrix} 4 & \lambda & 3 \\ 7 & 3 & 6 \\ 2 & 3 & 1 \end{bmatrix}$ is singular.				
(ix)	Solve $x^2 - 2x - 899 = 0$ by completing square. (x) Reduce $x^4 - 6x^2 + 10 - \frac{6}{x^2} + \frac{1}{x^4} = 0$ to quadratic form.				
(xi)	Discuss the nature of the roots of the equation $9x^2 - 12x + 4 = 0$				
(xii)	Prove that the sum of cube roots of unity is zero. $8 \times 2 = 16$				
3. Att	empt any eight parts.				
(i)	Resolve $7x + 25$ into partial fractions.				
	(x+3)(x+4) Find the number of terms in A.P. if $a=3$, $d=7$ and $a=59$ (iii) Define a geometric progression (G.P).				
(ii)	That the manner of terms in the same in th				
(iv)	If the numbers $\frac{1}{k}$, $\frac{1}{2k+1}$ and $\frac{1}{4k-1}$ are in harmonic sequence, find k .				
(v)	Find the sum of the infinite G.P., $2, \sqrt{2}, 1, \dots$				
(vi)	How many terms of the series $-7+(-4)+(-1)+\dots$ amount to 114?				
(vii)	How many 3 – digit numbers can be formed by using each one of the digits 2, 3, 5, 7, 9 only once?				
(viii)	Find the value of n , when ${}^{n}C_{5} = {}^{n}C_{4}$				
(ix)	If sample space = $\{1, 2, 3, 3, 9\}$, event $A = \{2, 4, 6, 8\}$ and event $B = \{1, 3, 5\}$. Find $P(A \cup B)$				
	If sample space = $\{1, 2, 3, \dots, 9\}$, event $A = \{2, 4, 6, 8\}$ and event $B = \{1, 3, 5\}$. Find $P(A \cup B)$ Use mathematical induction to prove that the formula is true for $n = 1$ and $n = 2$ $\frac{n(3n-1)}{2}$				
(x)					
(xi)	Calculate (2.02) ⁴ be means of binomial theorem.				
(xii)	If x is so small that its square and higher powers can be neglected, then show that $\frac{\sqrt{1+2x}}{\sqrt{1-x}} \approx 1 + \frac{3}{2}x$				
4. Att	empt any nine parts. $9 \times 2 = 18$				
(i)	What is the length of the arc intercepted on a circle of radius 14 cms by the arms of a central angle of 45°?				
(ii)	Find the values of all the trigonometric functions of 420°. (111) Prove that $2\cos^2\theta - 1 = 1 - 2\sin^2\theta$				
(iv)	Prove that $\cos 330^{\circ} \sin 600^{\circ} + \cos 120^{\circ} \sin 150^{\circ} = -1$ (v) Prove that $\frac{\cos 11^{\circ} + \sin 11^{\circ}}{\cos 11^{\circ} - \sin 11^{\circ}} = \tan 56^{\circ}$				
(vi)	(vii) Write the domain and range of cosecant function.				
	Find the value of $\cos 15^\circ$ without calculator. (vii) Write the domain and range of cosecant function. Find α if $a=7$, $b=7$, $c=9$. (ix) With usual notations prove that $\Delta = \sqrt{s(s-a)(s-b)(s-c)}$				
(viii)					
(x)	Show that $r_3 = s \tan \frac{\gamma}{2}$ (xi) Prove that $\sin^{-1} x = \frac{\pi}{2} - \cos^{-1} x$				
(xii)	Find the solution set of $\sin x \cos x = \frac{\sqrt{3}}{4} \text{ in } [0, 2\pi]$				
(xiii)	Solve the following trigonometric equation $\cot^2 \theta = \frac{1}{2}$ in [0, 2π]				
	3				
	SECTION-II 3 × 10 = 30				
NOTE	Attempt any three questions. $3 \times 10 - 30$ Use matrices to solve the system of linear equations $x - 2y + z = -1$, $3x + y - 2z = 4$, $y - z = 1$				
5.(a)	Use matrices to solve the system of finear equations $x-2y+2=-1$, $3x+y=22=4$, $y=2=1$				
(b)	Solve the equations simultaneously $x + y = a + b$; $\frac{a}{x} + \frac{b}{y} = 2$				
6.(a)	Resolve into partial fractions $\frac{4x^3}{(x^2-1)(x+1)^2}$				
(b)	A die is thrown. Find the propability that the dots on the top are prime numbers or odd numbers.				
7.(a)	Find 'n' so that $\frac{a^{n+1} + b^{n+1}}{a^n + b^n}$ may be harmonic mean between a and b .				
(b)	If 'x' is so small that its square and higher powers can be neglected, then show that $\frac{(9+7x)^{\frac{1}{2}}-(16+3x)^{\frac{1}{4}}}{4+5x}\approx \frac{1}{4}-\frac{17}{384}x$				
8.(a)	Find the values of other five trigonometric functions of θ , if $\cos \theta = \frac{12}{13}$ (b) Show that $\frac{\tan \alpha + \tan \beta}{\tan \alpha - \tan \beta} = \frac{\sin(\alpha + \beta)}{\sin(\alpha - \beta)}$				
9.(a)	and the terminal side of the angle is not in the first quadrant. Prove that $(r_1 + r_2) \tan \frac{\gamma}{2} = c$ (b) Prove that identity $\tan^{-1} \frac{1}{11} + \tan^{-1} \frac{5}{6} = \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{2}$				
	11 6 3 2 13-2023(1 st -A)-17000 (MULTAN)				

Nun		2023 (1 st ERMEDIATE PAR		Roll No:	4 TN-11-2-23	
GROUP-II						
	E ALLOWED: 30 Minutes		OBJECTIVE	MAXIMUM	MARKS: 20	
Q.No.1 You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that bubble in front of that question number, on bubble sheet. Use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question.						
S.#	QUESTIONS	A	DDIES WIII result	in zero mark in th		
1	If A is a matrix of order 3×1	1×1	1 × 3	3×1	<u>D</u>	
	then order of $AA' = $		1 × 3	3 × 1	3 × 3	
2	If $b^2 - 4ac < 0$ for a quadratic	2				
	equation $ax^2 + bx + c = 0$ the nature of the roots is	D 1 1	Real and repeated	Complex or imaginary	Real and rational	
3	Under what condition one root of $x^2 + px + q = 0$ is additive inverse of other.	p = 0	q = 0	p = 1	q = 1	
4	Partial fractions of	4 . 5				
•	$\frac{1}{(x-1)^2(x+1)}$ are of the type:	$\frac{Ax+B}{(x-1)^2} + \frac{c}{x+1}$	$\frac{A}{x-1} + \frac{B}{x+1}$	$\frac{Ax}{(x-1)^2} + \frac{B}{x-1}$	$\frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x+1}$	
5	Fifth term of geometric progression(G.P) 3, 6, 12, is	24	48	18	30	
6	Sum of <i>n</i> term of the series $\sum_{k=1}^{n} k^2 \text{ is:}$	$\frac{n(n+1)}{2}$	$\left[\frac{n(n+1)}{2}\right]^2$	n(n+1)(2n+1)	$\left[\frac{n(2n+1)}{2}\right]^2$	
7	If ${}^{n}C_{10} = \frac{12 \times 11}{2!}$ then $n = $	12.	8	11	13	
8	If A and B are two independent events then $P(A \cap B) =$	P(A) + P(B)	P(A)P(B)	$P(A) \rightarrow P(B)$	$P(A) + P(B) - P(A \cup B)$	
9	The sum of coefficients in the binomial expansion equals to	2"-1	2 ⁿ⁺¹	2^{2n-1}	2 ⁿ	
10	Third term in the expansion of $(1+2x)^{-1}$ is:	2 <i>x</i>	- 2 <i>x</i>	$4x^2$	$-8x^3$	
	The radius r of the site in which the arm of a dentral arigh of measure 1 radian out off an arc of length 35cm is		36 em	30 cm	32 cm	
	$3\sin\alpha - 4\sin^3\alpha$	$\cos 3\alpha$	$\sin 3\alpha$	$\cos 2\alpha$	$\sin 2\alpha$	
	The range of the function $y = \sec x$ is:	$-1 \le y \le 1$	-∞< <i>y</i> <+∞	<i>y</i> ≤ 1	$y \ge 1$ or $y \le -1$	
	If measures of the sides of triangle ABC are $a = 19$, $b = 14$, $c = 15$ then $r = 10$	8.125	10.5	4	14	
	With usual notations the circum-	abc	4Δ	Δ	C	
	radius $R = $	$\frac{1}{4\Lambda}$		-	<u> </u>	
	$\sin^{-1}A + \sin^{-1}B = \underline{\hspace{1cm}}$	$\frac{4\Delta}{\sin^{-1}\left(A\sqrt{1+B^2}+B\sqrt{1+A^2}\right)}$	$\sin^{-1}\left(A\sqrt{1-B^2}+B\sqrt{1-A^2}\right)$	$\frac{S}{S}$ $\sin^{-1}\left(A\sqrt{1+B^2}-B\sqrt{1+A^2}\right)$	$\frac{\overline{\Delta}}{\sin^{-1}\left(A\sqrt{1-B^2}-B\sqrt{1-A^2}\right)}$	
7 !	Solutions of the equation					
- 1	$\sin x = -\frac{\sqrt{3}}{2}$ which lie in	$\frac{\pi}{6}, \frac{5\pi}{6}$	$2\pi/_{3}$, $4\pi/_{3}$	$4\pi/_{3}$, $5\pi/_{3}$	$\frac{\pi}{3}, \frac{4\pi}{3}$	
	$[0, 2\pi]$ are:				*	
ł	f $x + iy = r\cos\theta + ir\sin\theta$ be the polar form of complex number then angle $\theta = $	$\tan^{-1}\frac{y}{x}$	$\tan \frac{y}{x}$	$\tan \frac{x}{y}$	$\tan^{-1}\frac{x}{y}$	
9 <i>A</i>	A compound statement of the form if p then q is called:	Conjunction	Disjunction	Conditional	biconditional	
1	n a square matrix A all elements below the principal diagonal are zero is called:	Lower triangular matrix	Upper triangular matrix	Symmetric matrix	Singular matrix	
			15(Obj)(★★★	★)-2023(1 st -A)-15(000 (MULTAN)	

INTERMEDIATE PART-I (11 th Class) 2023 (1 st -A) Roll No: M/N-1/-2-23						
MATHEMATICS PAPER-I GROUP-II						
TIME ALLOWED: 2.30 Hours SUBJECTIVE MAXIMUM MARKS: 80						
NOTE	E: Write same question number and its parts numb		swer book, as	given in the question paper.		
2 44	tempt any eight parts.	TION-I		8 × 2 = 16		
(i)	State trichotomy property and transitive property of in	nequalitie	s of real number			
(ii)	Separate $\frac{i}{1+i}$ into real and imaginary parts.	(iii)	Define Overla	apping sets.		
(iv)	Construct truth table for statement $(p \land \neg p) \rightarrow q$	(v)	Define semi-g	group.		
(vi)	If $A = \begin{bmatrix} i & 0 \\ 1 & -i \end{bmatrix}$, show that $A^4 = I_2$	(vii)	Write two pro	perties of determinants.		
(viii)	Define Skew Hermitian Matrix.	(ix)		ation $x^{\frac{1}{2}} - x^{\frac{1}{4}} - 6 = 0$		
(x)	Evaluate $(1 + \omega - \omega^2)^8$ (xi) Use factor	r theorem	to determine it	$f(x-2) is a factor of x^3 + x^2 - 7x + 1$		
(xii)	If α and β are the roots of $3x^2 - 2x + 4 = 0$ find	the value	of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$	U		
	tempt any eight parts.			8 × 2 = 16		
(i)	Define Proper Rational Fraction.					
(ii)	Which term of the A.P 5, 2, -1 , is -85 ?	1 6				
(iii) (iv)	If 5, 8 are two A.Ms between a and b , find a and Sum the series $3 + 5 - 7 + 9 + 11 - 13 + 15 + 17 - 19$		to 3n terms			
	If A , G and H are arithmetic, geometric and harmonic			b respectively show that $G^2 - 4H$		
(v) (vi)				b respectively, show that y = A11		
(vii)	Find the sum of <i>n</i> terms of the series whose <i>nth</i> term Prove from the first principle that ${}^{n}P_{r} = n \cdot {}^{n-1}P_{r-1}$	1S N + 2	+ <i>n</i> + 1.			
(viii)	How many permutations of the letters of the word PA	NAMA c	an be made, if	P is to be		
(ix)	the first letter in each arrangement? If ${}^{n}C_{8} = {}^{n}C_{12}$, find n .					
			(. 1) for	n – 1 2		
(x)	Use mathematical induction to prove 2 + 4 + 6 +		= n(n+1) for	n = 1, 2		
(xi)	Expand by using binomial theorem $(a + 2b)^5$	(xii)	Expand $(1-x)$	$(z)^{\frac{1}{2}}$ up to three terms.		
4. At	tempt any nine parts.	<u> </u>		$9 \times 2 = 18$		
(i)	Find x, if $\tan^2 45^\circ - \cos^2 60^\circ = x \sin 45^\circ \cos 45^\circ \tan 60^\circ$	60° (ii)	Prove that	$\sec^2 A + \cos ec^2 A = \sec^2 A \cos ec^2 A$		
(iii)	Prove that $\frac{1}{1} + \frac{1}{1} = 2\sec^2\theta$ (iv) If α , β , γ are the angles of a triangle ABC,					
	1+8110 1-8110			$\frac{\tan (\alpha + \beta) + \tan \gamma = 0}{\cos \alpha}$		
(v)	Prove that $\sin(45^{\circ} + \alpha) = \frac{1}{\sqrt{2}}(\sin \alpha + \cos \alpha)$		(VI) Prove th	the identity $\frac{1-\cos\alpha}{\sin\alpha} = \tan\frac{\alpha}{2}$		
(vii)	Find the period of $\cot 8x$ (viii) Find the area	of triang	le ABC, given t	hree sides, $a = 18$, $b = 24$, $c = 30$		
(ix)				Om away from anti-aircraft gun of 27°. Find the height of the plane.		
(xi)				equation $\cot \theta = \frac{1}{\sqrt{3}}, \ \theta \ \text{lie in } [0, 2\pi]$		
(xiii)	Find the values of θ , $2\sin\theta + \cos^2\theta - 1 = 0$					
()		ION-II				
NOTE				$3\times10=30$		
5.(a)	Find the multiplicative inverse of $A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 3 \\ 1 & 0 & 2 \end{bmatrix}$	(b)		alues of a and b if -2 and 2 are of polynomial $x^3 - 4x^2 + ax + b$		
6.(a)	Resolve into partial fractions $\frac{x^2+1}{x^3+1}$					
(b)	There are twenty chits marked 1, 2, 3,, 20 in a bag. Find the probability of picking a chit, the number written on which is a multiple of 4 or a multiple of 7.					
7.(a)	Find n A.M's between α and b .					
(b)						
	Use mathematical induction to prove that $1 + 2 + 4 + \dots + 2^{n-1} = 2^n - 1$			_		
8.(a)	Prove the identity $\sin^6 \theta + \cos^6 \theta = 1 - 3\sin^2 \theta \cos^2 \theta$					
(b)	If $\alpha + \beta + \gamma = 180^{\circ}$ prove that $\cot \beta \cot \alpha + \cot \beta \cot \gamma + \cot \alpha \cot \gamma = 1$					
9.(a)	Prove that $r_1 + r_2 + r_3 - r = 4R$ (b) Prove that $\sin^{-1} \frac{77}{85} - \sin^{-1} \frac{3}{5} = \cos^{-1} \frac{15}{17}$					
<u> </u>			15-	2023(1 st -A)-15000 (MULTAN)		