LHR-41-11-18 (To be filled in by the candidate) (Academic Sessions 2015 - 2017 to 2017 - 2019) 218-(INTER PART - I) Time Allowed: 20 Minutes GROUP - I Maximum Marks: 17

PAPER CODE = 6475Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling

Roll No

PHYSICS

Q.PAPER - I (Objective Type)

t	two or more circles will result in zero mark in that que	estion.	k. Cutting of firming			
1-1	The component of the weight which balances the tension in pendulum is:					
	(A) $mg cos\theta$ (B) $mg sin\theta$	(C) mg tanθ	(D) $-mg \sin\theta$			
*2 '	Work has the dimensions as that of:					
	(A) Momentum (B) Power	(C) Torque	(D) Force			
3	If red light is used as compared to blue light, the	en fringe spacing:				
	(A) Increases (B) Decreases	(C) Remains same	(D) Becomes zero			
4	A precise measurement is the one which has:					
	(A) Greater precision (B) Less precision	(C) Medium precision	(D) More % error			
5	The work done in isochoric process is:					
			Depend on condition			
6	As we go from pole to equator of earth, the value of 'g':					
	(A) Increases (B) Decreases	(C) Remains constant	(D) Zero			
7	Maximum number of components of a vector m					
8	(A) One (B) Two	(C) Three	(D) Infinite			
0	Physical quantity "pressure" in term of base uni					
	(A) $Kg^{-1}mS^{-2}$ (B) Kg^2mS^{-3}	(C) $Kg^2m^{-2}Sec$	(D) $Kg m^{-1} S^{-2}$			
9	When one end of organ pipe is closed, then the f	frequency of stationary wa	ves of any harmonic			
	in it is given by:					
	(A) $f_n = \frac{nv}{2\ell}$ (B) $f_n = \frac{n\ell}{4v}$	(C) $f_{v} = \frac{4v}{v}$	(D) $f_n = \frac{nv}{4\ell}$			
10			1n 4l			
10	Repeaters are placed in new system at distance of:					
11	(A) 30 km (B) 50 km	(C) 80 km	(D) 100 km			
11	The fluid is said to be incompressible, if its den	C. C. W. 150-1 (1)				
· 12	(A) Zero (B) Very high	(C) Very small	(D) Constant			
- 12	The distance covered by a body in time 't' starti		1 2			
	$(A) at^2 (B) 2at^2$	(C) $\frac{1}{2}at^2$	(D) $\frac{1}{2}a^2t$			
13	When hot and cold water are mixed, the entropy	•				
	(A) Decreases (B) Increases	(C) Remains constant	(D) Zero			
-14	The relation between the speed of disc and hoop can be written as:					
	$\sqrt{3}$	san us on "				
	(A) $V_{disc} = \sqrt{\frac{3}{4}} V_{hoop}$ (B) $V_{disc} = \sqrt{\frac{4}{3}} V_{hoop}$	(C) $V_{disc} = V_{hoop}$	(D) $V_{disc} = \frac{1}{2}V_{hoop}$			
15	The magnitude of a vector $\vec{r} = 3\hat{i} + 6\hat{j} + 2\hat{k}$ is					
			(D) 0			
·16	(A) -1 (B) -7 If a stretched string is 4 m and it has 4 loops of stretched string is 5 m and 1 m	stationary waves, then way	(D) 8			
	Lava a	200 200 CD				
,17	(A) 1 m (B) 2 m The blue colour of sky is due to:	(C) 3 m	(D) 4 m			
	(A) Diffraction of light (B) Reflection of light					
	(C) Polarization of light (D) Scattering of light					

Roll No (To be filled in by the candidate) (Academic Sessions 2015 – 2017 to 2017 – 2019) **PHYSICS** 218-(INTER PART - I)Time Allowed: 2.40 hours PAPER – I (Essay Type) GROUP - I Maximum Marks: 68 SECTION - I

1 ARC1-11-18

- 2. Write short answers to any EIGHT (8) questions:
 - (i) Define and explain scientific notation, also give example.
- , (ii) Show that the expression $v_f = v_i + at$ is dimensionally correct.
- (iii) Write any two uses of dimensional analysis.
- no (iv) Name several repetitive phenomenon occurring in nature which could serve as reasonable time standards.
- (v) Can the magnitude of a vector have a negative value?
- · (vi) The vector sum of three vectors gives a zero resultant. What can be the orientation of the vectors?
- (vii) Define the terms (i) Null vector (ii) Subtraction of vector
- (viii) What happens when a very heavy body collides with lighter stationary body? Explain.
- (ix) Can the velocity of an object reverse direction when acceleration is constant? If so, give an example.
 - (x) Define isolated system with example.
- (xi) Two boats moving parallel in the same directon are pulled towards each other. Explain why?
- (xii) Explain the difference between laminar flow and turbulent flow.

3. Write short answers to any EIGHT (8) questions:

16

16

- (i) When a rocket re-enters the atmosphere, its nose cone becomes very hot, where does this heat energy comes from?
- (ii) What sort of energy is in compressed spring and water in a high dam?
- (iii) Write two merits and demerits of solar cells.
- •(iv) Explain how many minimum number of geo-stationary satellites are required for global coverage of T.V. transmission.
- (v) Show that orbital angular momentum $L_o = mvr$
- (vi) Find total kinetic energy of rolling sphere of mass 'm' and radius 'r' on horizontal smooth surface.
- (vii) Prove that $\omega = \sqrt{\frac{k}{m}}$ for mass spring system.
- (viii) How displacement and amplitude are related for mass spring system?
- (ix) What happens to the period of a simple pendulum if its length is doubled? What happens if the suspended mass is doubled?
- •(x) Explain the term crest, trough, node and antinode.
- (xi) As a result of a distant explosion an observer senses a ground tremor and then hears the explosion. Explain the time difference.
- (xii) Why does transverse wave reflecting from a denser medium undergo a phase change of 180°?

(Turn Over)

9. 2(a) Explain a simple microscope. Derive formula for its magnification.

this grating?

 $_{3}$ (b) Sodium light of wavelength $\lambda = 589$ nm, is incident normally on a grating having 3000 lines per centimeter. What is highest order of the spectrum obtained with

5

3

PHYSICS (10 bective Type) 218-{(INTER PART - I)} Time Allowed: 20 Minutes (20 PAPER - I (Objective Type) 218-{(INTER PART - I)} Time Allowed: 20 Minutes (ROUP - II Maximum Marks: 17 PAPER COBE = 6478 Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question. 1-1 Intensity of light depends on: (A) Wavelength (B) Amplitude (C) Velocity (D) Frequency 1-2 The ratio of angular frequency and linear frequency is: (A) 2π (B) π (C) $\frac{1}{2\pi}$ (D) $\frac{\pi}{2}$ 3 Which shows correct relation between H and T of projectile: (A) $H - \frac{gT^2}{8}$ (B) $H - \frac{8T^2}{8}$ (C) $H = \frac{8g}{7^2}$ (D) $H = \frac{g}{gT^2}$ 4 Velocity of sound is independent of: (A) Temperature (B) Density (C) Pressure (D) Medium 5 • If the radius of droplet becomes half, then its terminal velocity will be: (A) Double (B) Half (C) One fourth (D) Four time The percentage uncertainty in measurement of mass and velocity are 2% and 3%, the maximum uncertainty in the measurement of kinetic energy is: (A) 11% (B) 8% (C) 6% (D) 1% 8 Hot igneous rocks usually in molten or partly molten state are found in the depth of: (A) 5 km (B) 10 km (C) 15 km (D) 20 km 9 Angle between ray of light and wave front is: (A) 0° (B) 60° (C) 120° (D) 90° 10 • Solid angles subtended at the center by a sphere is: (A) 0° (B) 4π (C) 6π (D) 8π 11 If 30 waves per second pass through a medium at speed of $30ms^{-1}$, the wavelength is: (A) $\frac{1}{2\pi}$ (B) $\frac{1}{2\pi}$ (C) $\frac{1}{2\pi}$ (D)	Roll No	(T-1, CU 1	L	HR-42-	11-18
2.PAPER – I (Objective Type) PAPER ART – I) GROUP – II Raximum Marks: 1.7 PAPER CODE = 6478 Asimum Marks: 1.7 PAPER CODE = 6478 Raximum Allowed: 2.0 Minutes Maximum Marks: 1.7 PAPER CODE = 6478 Raximum Allowed: 1.7 Ra		(10 be mied	in by the candio	late) (Academic Sess	sions 2015 – 2017 to 2017 – 2019)
Note: Four possible answers A. B. C. and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question. 1-1 Intensity of light depends on: (A) Wavelength (B) Amplitude (C) Velocity (D) Prequency The ratio of angular frequency and linear frequency is: (A) 2π (B) π (C) $\frac{1}{2\pi}$ (D) $\frac{\pi}{2}$ 3 Which shows correct relation between H and T of projectile: (A) $H = \frac{gT^2}{g}$ (D) $H = \frac{g}{g}$ (C) $H = \frac{g}{g}$ (D) $H = \frac{g}{g}$ 4 Velocity of sound is independent of: (A) Temperature (B) Density (C) Pressure (D) Medium 5 • If the radius of droplet becomes half, then its terminal velocity will be: (A) Double (B) Half (C) One fourth (D) Four time The percentage uncertainty in measurement of mass and velocity are 2% and 3%, the maximum uncertainty in the measurement of kinetic energy is: (A) $H = \frac{g}{g}$ (D) $H = \frac{g}{g}$ (C) $H = \frac{g}{g}$ (D) $H = \frac{g}{g}$ (D			10-(INTER PA	KI – I)	Time Allowed: 20 Minutes
Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in finot of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question. 1-1 Intensity of light depends on: (A) Wavelength (B) Amplitude (C) Velocity (D) Frequency (A) 2π (B) π (C) $\frac{1}{2\pi}$ (D) $\frac{\pi}{2}$ 3 Which shows correct relation between H and T of projectile: (A) $H - \frac{gT^2}{8}$ (B) $H = \frac{8T^2}{g}$ (C) $H = \frac{8g}{T^2}$ (D) $H = \frac{8g}{gT^2}$ 4 Velocity of sound is independent of: (A) Temperature (B) Density (C) Pressure (D) Medium 5 • If the radius of droplet becomes half, then its terminal velocity will be: (A) Double (B) Half (C) One fourth (D) Four time 6 The percentage uncertainty in measurement of mass and velocity are 2% and 3% , the maximum uncertainty in the measurement of Kinetic energy is: (A) 11% (B) 8% (C) 6% (D) 1% 8 Hot igneous rocks usually in molten or partly molten state are found in the depth of: (A) 5 km (B) 10 km (C) 15 km (D) 20 km Angle between ray of light and wave front is: (A) 2π (B) 4π (C) 6π (D) 8π 11 If 30 waves per second pass through a medium at speed of $30ms^{-1}$, the wavelength is: (A) 2π (B) 4π (C) 6π (D) 8π 11 If 30 waves per second pass through a medium at speed of $30ms^{-1}$, the wavelength is: (A) 2π (B) 4π (C) 6π (D) 8π 11 If 30 waves per second pass through a medium at speed of $30ms^{-1}$, the wavelength is: (A) 2π (B) 4π (C) 6π (D) 8π 11 If 30 waves per second pass through a medium at speed of $30ms^{-1}$, the wavelength is: (A) 2π (B) 2π (C) 2π (D) 2π (PA	PER CONE -	- 6470	
two or more circles will result in zero mark in that question. Intensity of light depends on: (A) Wavelength (B) Amplitude (C) Velocity (D) Frequency 1 The ratio of angular frequency and linear frequency is: (A) 2π (B) π (C) $\frac{1}{2\pi}$ (D) $\frac{\pi}{2}$ 3 Which shows correct relation between H and T of projectitle: (A) $H - \frac{gT^2}{8}$ (B) $H = \frac{8T^2}{8}$ (C) $H = \frac{8g}{T^2}$ (D) $H = \frac{gT^2}{gT^2}$ 4 Velocity of sound is independent of: (A) Temperature (B) Density (C) Pressure (D) Medium 5 • If the radius of droplet becomes half, then its terminal velocity will be: (A) Double (B) Half (C) One fourth (D) Four time The percentage uncertainty in measurement of mass and velocity are 2% and 3% , the maximum uncertainty in the measurement of kinetic energy is: (A) 11% (B) 8% (C) 6% (D) 1% 7 • SI unit pressure of gas is: (A) Mm^2 (B) Mm (C) N^2m^{-1} (D) N^2m Hot igneous rocks usually in molten or partly molten state are found in the depth of: (A) 5% (B) 1% (C) 15% (D) 90%	Note:	Four possible answers A. B. C. and	D to each question	an ana air	oice which you think!
Intensity of light depends on :					inswer-book. Cutting or filling
(A) Wavelength (B) Amplitude (C) Velocity (D) Frequency The ratio of angular frequency and linear frequency is: (A) 2π (B) π (C) $\frac{1}{2\pi}$ (D) $\frac{\pi}{2}$ Which shows correct relation between H and T of projectile: (A) $H = \frac{gT^2}{8}$ (D) $H = \frac{8T^2}{g}$ (C) $H = \frac{8g}{T^2}$ (D) $H = \frac{g}{gT^2}$ 4 Velocity of sound is independent of: (A) Temperature (B) Density (C) Pressure (D) Medium 5 • If the radius of droplet becomes half, then its terminal velocity will be: (A) Double (B) Half (C) One fourth (D) Four time The percentage uncertainty in measurement of mass and velocity are 2% and 3% , the maximum uncertainty in the measurement of kinetic energy is: (A) 11% (B) 8% (C) 6% (D) 1% 7 • SI unit pressure of gas is: (A) Mm^{-2} (B) Nm (C) N^2m^{-1} (D) N^2m Hot igneous rocks usually in molten or partly molten state are found in the depth of: (A) 5% (A) 5% (B) 60% (C) 120% (D) 90% (A) 5% (B) 60% (C) 120% (D) 90% (D) 90% (Solid angle subtended at the center by a sphere is: (A) 2π (B) 4π (C) 6π (D) 8π 11 If 30 waves per second pass through a medium at speed of $30ms^{-1}$, the wavelength is: (A) 30% (B) 15% (C) 10% (D) 10% (D) 12% (D)	1.1		or o minimum min man	question.	
The ratio of angular frequency and linear frequency is: (A) 2π (B) π (C) $\frac{1}{2\pi}$ (D) $\frac{\pi}{2}$ Which shows correct relation between H and T of projectile: (A) $H - \frac{gT^2}{8}$ (B) $H = \frac{8T^2}{g}$ (C) $H = \frac{8g}{T^2}$ (D) $H = \frac{8}{gT^2}$ Velocity of sound is independent of: (A) Temperature (B) Density (C) Pressure (D) Medium If the radius of droplet becomes half, then its terminal velocity will be: (A) Double (B) Half (C) One fourth (D) Four time The percentage uncertainty in measurement of mass and velocity are 2% and 3%, the maximum uncertainty in the measurement of kinetic energy is: (A) 11% (B) 8% (C) 6% (D) 1% 7 • SI unit pressure of gas is: (A) Mm^{-2} (B) Nm (C) N^2m^{-1} (D) N^2m Hot igneous rocks usually in molten or partly molten state are found in the depth of: (A) 5 km (B) 10 km (C) 15 km (D) 20 km 9 • Angle between ray of light and wave front is: (A) 0° (B) 60° (C) 120° (D) 90° Solid angle subtended at the center by a sphere is: (A) 2π (B) 4π (C) 6π (D) 8π 11 If 30 waves per second pass through a medium at speed of $30ms^{-1}$, the wavelength is: (A) 30 m (B) 15 m (C) 1 m (D) 900 m 12 • $i \cdot (\hat{j} \times \hat{k})$ is equal to: (A) k (B) 1 (C) Null vector (D) Zero 13 Information carrying capacity of optical fibre is called: (A) Capacity (B) Band width (C) Immunity (D) Ability 14 Radar system is an application of: (A) Interference (B) Beats (C) Stationary waves (D) Doppler's effect 15 For an ideal gas, the potential energy associated with its molecules is: (A) Maximum (B) Zero (C) $\frac{1}{2}KX_o^2$ (D) $\frac{1}{2}KX_o$ (A) $1.5ms^{-1}$ (B) $2.5ms^{-1}$ (C) $3.5ms^{-1}$ (D) $4.5ms^{-1}$ The resultant of two forces $3N$ and $4N$ acting parallel to each other is: (A) $7N$ (B) $1N$ (C) $5N$ (D) $4N$	1-1	19 4316 1940			
The ratio of angular frequency and linear frequency is: (A) 2π (B) π (C) $\frac{1}{2\pi}$ (D) $\frac{\pi}{2}$ Which shows correct relation between H and T of projectile: (A) $H - \frac{gT^2}{8}$ (B) $H = \frac{8T^2}{g}$ (C) $H = \frac{8g}{T^2}$ (D) $H = \frac{8}{gT^2}$ Velocity of sound is independent of: (A) Temperature (B) Density (C) Pressure (D) Medium If the radius of droplet becomes half, then its terminal velocity will be: (A) Double (B) Half (C) One fourth (D) Four time The percentage uncertainty in measurement of mass and velocity are 2% and 3%, the maximum uncertainty in the measurement of kinetic energy is: (A) 11% (B) 8% (C) 6% (D) 1% 7 • SI unit pressure of gas is: (A) Mm^{-2} (B) Nm (C) N^2m^{-1} (D) N^2m Hot igneous rocks usually in molten or partly molten state are found in the depth of: (A) 5 km (B) 10 km (C) 15 km (D) 20 km 9 • Angle between ray of light and wave front is: (A) 0° (B) 60° (C) 120° (D) 90° Solid angle subtended at the center by a sphere is: (A) 2π (B) 4π (C) 6π (D) 8π 11 If 30 waves per second pass through a medium at speed of $30ms^{-1}$, the wavelength is: (A) 30 m (B) 15 m (C) 1 m (D) 900 m 12 • $i \cdot (\hat{j} \times \hat{k})$ is equal to: (A) k (B) 1 (C) Null vector (D) Zero 13 Information carrying capacity of optical fibre is called: (A) Capacity (B) Band width (C) Immunity (D) Ability 14 Radar system is an application of: (A) Interference (B) Beats (C) Stationary waves (D) Doppler's effect 15 For an ideal gas, the potential energy associated with its molecules is: (A) Maximum (B) Zero (C) $\frac{1}{2}KX_o^2$ (D) $\frac{1}{2}KX_o$ (A) $1.5ms^{-1}$ (B) $2.5ms^{-1}$ (C) $3.5ms^{-1}$ (D) $4.5ms^{-1}$ The resultant of two forces $3N$ and $4N$ acting parallel to each other is: (A) $7N$ (B) $1N$ (C) $5N$ (D) $4N$	- -	(A) Wavelength (B	3) Amplitude	(C) Velocity	(D) Frequency
(A) $H - \frac{gT}{8}$ (B) $H = \frac{8T^2}{g}$ (C) $H = \frac{8g}{T^2}$ (D) $H = \frac{8}{gT^2}$ 4 Velocity of sound is independent of: (A) Temperature (B) Density (C) Pressure (D) Medium 5 • If the radius of droplet becomes half, then its terminal velocity will be: (A) Double (B) Half (C) One fourth (D) Four time The percentage uncertainty in measurement of mass and velocity are 2% and 3% , the maximum uncertainty in the measurement of kinetic energy is: (A) 11% (B) 8% (C) 6% (D) 1% 7 • SI unit pressure of gas is: (A) Nm^{-2} (B) Nm (C) N^2m^{-1} (D) N^2m 8 Hot igneous rocks usually in molten or partly molten state are found in the depth of: (A) 5 km (B) 10 km (C) 15 km (D) 20 km 9 • Angle between ray of light and wave front is: (A) 0° (B) 60° (C) 120° (D) 90° 10 • Solid angle subtended at the center by a sphere is: (A) 2π (B) 4π (C) 6π (D) 8π 11 If 30 waves per second pass through a medium at speed of $30ms^{-1}$, the wavelength is: (A) 30 m (B) 15 m (C) 1 m (D) 900 m 12 • $i \cdot (j \times k)$ is equal to: (A) k (B) 1 (C) Null vector (D) Zero 13 • Information carrying capacity of optical fibre is called: (A) Capacity (B) Band width (C) Immunity (D) Ability 14 • Radar system is an application of: (A) Interference (B) Beats (C) Stationary waves (D) Doppler's effect 5 For an ideal gas, the potential energy associated with its molecules is: (A) Maximum (B) Zero (C) $\frac{1}{2}KX_{o}$ (D) $\frac{1}{2}KX_{o}$ 16 • A wheel of radius 50 cm having an angular speed 5 rad/sec will have linear speed: (A) $1.5ms^{-1}$ (B) $2.5ms^{-1}$ (C) $3.5ms^{-1}$ (D) $4.5ms^{-1}$ The resultant of two forces 3N and 4N acting parallel to each other is: (A) $7N$ (B) $1N$ (C) $5N$ (D) $4N$	2	The ratio of angular frequency	and linear freq	uency is:	1
(A) $H - \frac{gT}{8}$ (B) $H = \frac{8T^2}{g}$ (C) $H = \frac{8g}{T^2}$ (D) $H = \frac{8}{gT^2}$ 4 Velocity of sound is independent of: (A) Temperature (B) Density (C) Pressure (D) Medium 5 • If the radius of droplet becomes half, then its terminal velocity will be: (A) Double (B) Half (C) One fourth (D) Four time The percentage uncertainty in measurement of mass and velocity are 2% and 3% , the maximum uncertainty in the measurement of kinetic energy is: (A) 11% (B) 8% (C) 6% (D) 1% 7 • SI unit pressure of gas is: (A) Nm^{-2} (B) Nm (C) N^2m^{-1} (D) N^2m 8 Hot igneous rocks usually in molten or partly molten state are found in the depth of: (A) 5 km (B) 10 km (C) 15 km (D) 20 km 9 • Angle between ray of light and wave front is: (A) 0° (B) 60° (C) 120° (D) 90° 10 • Solid angle subtended at the center by a sphere is: (A) 2π (B) 4π (C) 6π (D) 8π 11 If 30 waves per second pass through a medium at speed of $30ms^{-1}$, the wavelength is: (A) 30 m (B) 15 m (C) 1 m (D) 900 m 12 • $i \cdot (j \times k)$ is equal to: (A) k (B) 1 (C) Null vector (D) Zero 13 • Information carrying capacity of optical fibre is called: (A) Capacity (B) Band width (C) Immunity (D) Ability 14 • Radar system is an application of: (A) Interference (B) Beats (C) Stationary waves (D) Doppler's effect 5 For an ideal gas, the potential energy associated with its molecules is: (A) Maximum (B) Zero (C) $\frac{1}{2}KX_{o}$ (D) $\frac{1}{2}KX_{o}$ 16 • A wheel of radius 50 cm having an angular speed 5 rad/sec will have linear speed: (A) $1.5ms^{-1}$ (B) $2.5ms^{-1}$ (C) $3.5ms^{-1}$ (D) $4.5ms^{-1}$ The resultant of two forces 3N and 4N acting parallel to each other is: (A) $7N$ (B) $1N$ (C) $5N$ (D) $4N$		(A) 2π	0004291	1	-
(A) $H - \frac{gT}{8}$ (B) $H = \frac{8T^2}{g}$ (C) $H = \frac{8g}{T^2}$ (D) $H = \frac{8}{gT^2}$ 4 Velocity of sound is independent of: (A) Temperature (B) Density (C) Pressure (D) Medium 5 • If the radius of droplet becomes half, then its terminal velocity will be: (A) Double (B) Half (C) One fourth (D) Four time The percentage uncertainty in measurement of mass and velocity are 2% and 3% , the maximum uncertainty in the measurement of kinetic energy is: (A) 11% (B) 8% (C) 6% (D) 1% 7 • SI unit pressure of gas is: (A) Nm^{-2} (B) Nm (C) N^2m^{-1} (D) N^2m 8 Hot igneous rocks usually in molten or partly molten state are found in the depth of: (A) 5 km (B) 10 km (C) 15 km (D) 20 km 9 • Angle between ray of light and wave front is: (A) 0° (B) 60° (C) 120° (D) 90° 10 • Solid angle subtended at the center by a sphere is: (A) 2π (B) 4π (C) 6π (D) 8π 11 If 30 waves per second pass through a medium at speed of $30ms^{-1}$, the wavelength is: (A) 30 m (B) 15 m (C) 1 m (D) 900 m 12 • $i \cdot (j \times k)$ is equal to: (A) k (B) 1 (C) Null vector (D) Zero 13 • Information carrying capacity of optical fibre is called: (A) Capacity (B) Band width (C) Immunity (D) Ability 14 • Radar system is an application of: (A) Interference (B) Beats (C) Stationary waves (D) Doppler's effect 5 For an ideal gas, the potential energy associated with its molecules is: (A) Maximum (B) Zero (C) $\frac{1}{2}KX_{o}$ (D) $\frac{1}{2}KX_{o}$ 16 • A wheel of radius 50 cm having an angular speed 5 rad/sec will have linear speed: (A) $1.5ms^{-1}$ (B) $2.5ms^{-1}$ (C) $3.5ms^{-1}$ (D) $4.5ms^{-1}$ The resultant of two forces 3N and 4N acting parallel to each other is: (A) $7N$ (B) $1N$ (C) $5N$ (D) $4N$		(B)	π	(C) $\frac{4}{2\pi}$	(D) $\frac{\pi}{2}$
(A) $H - \frac{gT}{8}$ (B) $H = \frac{8T^2}{g}$ (C) $H = \frac{8g}{T^2}$ (D) $H = \frac{8}{gT^2}$ 4 Velocity of sound is independent of: (A) Temperature (B) Density (C) Pressure (D) Medium 5 • If the radius of droplet becomes half, then its terminal velocity will be: (A) Double (B) Half (C) One fourth (D) Four time The percentage uncertainty in measurement of mass and velocity are 2% and 3% , the maximum uncertainty in the measurement of kinetic energy is: (A) 11% (B) 8% (C) 6% (D) 1% 7 • SI unit pressure of gas is: (A) Nm^{-2} (B) Nm (C) N^2m^{-1} (D) N^2m 8 Hot igneous rocks usually in molten or partly molten state are found in the depth of: (A) 5 km (B) 10 km (C) 15 km (D) 20 km 9 • Angle between ray of light and wave front is: (A) 0° (B) 60° (C) 120° (D) 90° 10 • Solid angle subtended at the center by a sphere is: (A) 2π (B) 4π (C) 6π (D) 8π 11 If 30 waves per second pass through a medium at speed of $30ms^{-1}$, the wavelength is: (A) 30 m (B) 15 m (C) 1 m (D) 900 m 12 • $i \cdot (j \times k)$ is equal to: (A) k (B) 1 (C) Null vector (D) Zero 13 • Information carrying capacity of optical fibre is called: (A) Capacity (B) Band width (C) Immunity (D) Ability 14 • Radar system is an application of: (A) Interference (B) Beats (C) Stationary waves (D) Doppler's effect 5 For an ideal gas, the potential energy associated with its molecules is: (A) Maximum (B) Zero (C) $\frac{1}{2}KX_{o}$ (D) $\frac{1}{2}KX_{o}$ 16 • A wheel of radius 50 cm having an angular speed 5 rad/sec will have linear speed: (A) $1.5ms^{-1}$ (B) $2.5ms^{-1}$ (C) $3.5ms^{-1}$ (D) $4.5ms^{-1}$ The resultant of two forces 3N and 4N acting parallel to each other is: (A) $7N$ (B) $1N$ (C) $5N$ (D) $4N$	3	Which shows correct relation	between H and	T of projectile:	2
Velocity of sound is independent of: (A) Temperature (B) Density (C) Pressure (D) Medium If the radius of droplet becomes half, then its terminal velocity will be: (A) Double (B) Half (C) One fourth (D) Four time The percentage uncertainty in measurement of mass and velocity are 2% and 3%, the maximum uncertainty in the measurement of kinetic energy is: (A) 11% (B) 8% (C) 6% (D) 1% SI unit pressure of gas is: (A) Nm ⁻² (B) Nm (C) N ² m ⁻¹ (D) N ² m Hot igneous rocks usually in molten or partly molten state are found in the depth of: (A) 5 km (B) 10 km (C) 15 km (D) 20 km Angle between ray of light and wave front is: (A) 0° (B) 60° (C) 120° (D) 90° 10 Solid angle subtended at the center by a sphere is: (A) 2π (B) 4π (C) 6π (D) 8π 11 If 30 waves per second pass through a medium at speed of 30ms ⁻¹ , the wavelength is: (A) 30 m (B) 15 m (C) 1 m (D) 900 m 12 i. (j x k̂) is equal to: (A) k̂ (B) 1 (C) Null vector (D) Zero 13 Information carrying capacity of optical fibre is called: (A) Capacity (B) Band width (C) Immunity (D) Ability 14 Radar system is an application of: (A) Interference (B) Beats (C) Stationary waves (D) Doppler's effect For an ideal gas, the potential energy associated with its molecules is: (A) Maximum (B) Zero (C) ½ KX _o ² (D) ½ KX _o 16 A Wheel of radius 50 cm having an angular speed 5 rad / sec will have linear speed: (A) 1.5ms ⁻¹ (B) 2.5ms ⁻¹ (C) 3.5ms ⁻¹ (D) 4.5ms ⁻¹ The resultant of two forces 3N and 4N acting parallel to each other is: (A) 7N (B) 1N (C) 5N (D) 4N		$(\Delta) H = gT^2$	$T = 8T^2$	80	0
Velocity of sound is independent of: (A) Temperature (B) Density (C) Pressure (D) Medium If the radius of droplet becomes half, then its terminal velocity will be: (A) Double (B) Half (C) One fourth (D) Four time The percentage uncertainty in measurement of mass and velocity are 2% and 3%, the maximum uncertainty in the measurement of kinetic energy is: (A) 11% (B) 8% (C) 6% (D) 1% SI unit pressure of gas is: (A) Nm ⁻² (B) Nm (C) N ² m ⁻¹ (D) N ² m Hot igneous rocks usually in molten or partly molten state are found in the depth of: (A) 5 km (B) 10 km (C) 15 km (D) 20 km Angle between ray of light and wave front is: (A) 0° (B) 60° (C) 120° (D) 90° 10 Solid angle subtended at the center by a sphere is: (A) 2π (B) 4π (C) 6π (D) 8π 11 If 30 waves per second pass through a medium at speed of 30ms ⁻¹ , the wavelength is: (A) 30 m (B) 15 m (C) 1 m (D) 900 m 12 i. (j x k̂) is equal to: (A) k̂ (B) 1 (C) Null vector (D) Zero 13 Information carrying capacity of optical fibre is called: (A) Capacity (B) Band width (C) Immunity (D) Ability 14 Radar system is an application of: (A) Interference (B) Beats (C) Stationary waves (D) Doppler's effect For an ideal gas, the potential energy associated with its molecules is: (A) Maximum (B) Zero (C) ½ KX _o ² (D) ½ KX _o 16 A Wheel of radius 50 cm having an angular speed 5 rad / sec will have linear speed: (A) 1.5ms ⁻¹ (B) 2.5ms ⁻¹ (C) 3.5ms ⁻¹ (D) 4.5ms ⁻¹ The resultant of two forces 3N and 4N acting parallel to each other is: (A) 7N (B) 1N (C) 5N (D) 4N		$\frac{1}{8}$ (B)	$II = \frac{1}{g}$	(C) $H = \frac{G}{T^2}$	(D) $H = \frac{8}{2}$
(A) Temperature (B) Density (C) Pressure (D) Medium 5 • If the radius of droplet becomes half, then its terminal velocity will be: (A) Double (B) Half (C) One fourth (D) Four time The percentage uncertainty in measurement of mass and velocity are 2% and 3%, the maximum uncertainty in the measurement of kinetic energy is: (A) 11% (B) 8% (C) 6% (D) 1% 7 • SI unit pressure of gas is: (A) Nm ⁻² (B) Nm (C) N ² m ⁻¹ (D) N ² m 8 Hot igneous rocks usually in molten or partly molten state are found in the depth of: (A) 5 km (B) 10 km (C) 15 km (D) 20 km Angle between ray of light and wave front is: (A) 0° (B) 60° (C) 120° (D) 90° 10 • Solid angle subtended at the center by a sphere is: (A) 2π (B) 4π (C) 6π (D) 8π 11 If 30 waves per second pass through a medium at speed of 30ms ⁻¹ , the wavelength is: (A) 30 m (B) 15 m (C) 1 m (D) 900 m 12 · η(Ĵxk̂) is equal to: (A) λ (C) C (D)	4	Velocity of sound is independe	ent of :		g _I -
1 If the radius of droplet becomes half, then its terminal velocity will be: (A) Double (B) Half (C) One fourth (D) Four time The percentage uncertainty in measurement of mass and velocity are 2% and 3%, the maximum uncertainty in the measurement of kinetic energy is: (A) 11% (B) 8% (C) 6% (D) 1% Slunit pressure of gas is: (A) Nm ⁻² (B) Nm (C) N ² m ⁻¹ (D) N ² m Hot igneous rocks usually in molten or partly molten state are found in the depth of: (A) 5 km (B) 10 km (C) 15 km (D) 20 km Angle between ray of light and wave front is: (A) 0° (B) 60° (C) 120° (D) 90° Solid angle subtended at the center by a sphere is: (A) 2π (B) 4π (C) 6π (D) 8π If 30 waves per second pass through a medium at speed of 30ms ⁻¹ , the wavelength is: (A) 30 m (B) 15 m (C) 1 m (D) 900 m 12 o i .(j x k) is equal to: (A) k (B) 1 (C) Null vector (D) Zero Information carrying capacity of optical fibre is called: (A) Capacity (B) Band width (C) Immunity (D) Ability Radar system is an application of: (A) Interference (B) Beats (C) Stationary waves (D) Doppler's effect For an ideal gas, the potential energy associated with its molecules is: (A) Maximum (B) Zero (C) ½ KX ₀ (D) ½ KX ₀ A wheel of radius 50 cm having an angular speed 5 rad/sec will have linear speed: (A) 1.5ms ⁻¹ (B) 2.5ms ⁻¹ (C) 3.5ms ⁻¹ (D) 4.5ms ⁻¹ The resultant of two forces 3N and 4N acting parallel to each other is: (A) 7N (B) 1N (C) 5N (D) 4N		(4) 70		(C) P	•
(A) Double (B) Half (C) One fourth (D) Four time The percentage uncertainty in measurement of mass and velocity are 2% and 3%, the maximum uncertainty in the measurement of kinetic energy is: (A) 11% (B) 8% (C) 6% (D) 1% 7 • SI unit pressure of gas is: (A) Nm^{-2} (B) Nm (C) N^2m^{-1} (D) N^2m 8 Hot igneous rocks usually in molten or partly molten state are found in the depth of: (A) 5 km (B) 10 km (C) 15 km (D) 20 km 7 • Angle between ray of light and wave front is: (A) 0° (B) 60° (C) 120° (D) 90° 10 • Solid angle subtended at the center by a sphere is: (A) 2π (B) 4π (C) 6π (D) 8π 11 If 30 waves per second pass through a medium at speed of $30ms^{-1}$, the wavelength is: (A) 30 m (B) 15 m (C) 1 m (D) 900 m 12 · $i \cdot (j \times k)$ is equal to: (A) k (B) 1 (C) Null vector (D) Zero 13 · (A) Capacity (B) Band width (C) Immunity (D) Ability 14 · Radar system is an application of: (A) Interference (B) Beats (C) Stationary waves (D) Doppler's effect 15 For an ideal gas, the potential energy associated with its molecules is: (A) Maximum (B) Zero (C) $\frac{1}{2}KX_{o}^{2}$ (D) $\frac{1}{2}KX_{o}^{2}$ 16 · A wheel of radius 50 cm having an angular speed 5 rad / sec will have linear speed: (A) $1.5ms^{-1}$ (B) $2.5ms^{-1}$ (C) $3.5ms^{-1}$ (D) $4.5ms^{-1}$ The resultant of two forces $3N$ and $4N$ acting parallel to each other is: (A) $7N$ (B) $1N$ (C) $5N$ (D) $4N$	5 0	If the radius of droplet become	s half then its t	(C) Pressure	(D) Medium
The percentage uncertainty in measurement of mass and velocity are 2% and 3%, the maximum uncertainty in the measurement of kinetic energy is: (A) 11% (B) 8% (C) 6% (D) 1% 7 • SI unit pressure of gas is: (A) Nm^{-2} (B) Nm (C) N^2m^{-1} (D) N^2m Hot igneous rocks usually in molten or partly molten state are found in the depth of: (A) 5 km (B) 10 km (C) 15 km (D) 20 km Angle between ray of light and wave front is: (A) 0° (B) 60° (C) 120° (D) 90° Solid angle subtended at the center by a sphere is: (A) 2π (B) 4π (C) 6π (D) 8π 11 If 30 waves per second pass through a medium at speed of $30ms^{-1}$, the wavelength is: (A) 30 m (B) 15 m (C) 1 m (D) 900 m 12 · $\hat{I}.(\hat{J} \times \hat{k})$ is equal to: (A) \hat{k} (B) 1 (C) Null vector (D) Zero Information carrying capacity of optical fibre is called: (A) Capacity (B) Band width (C) Immunity (D) Ability 14 • Radar system is an application of: (A) Interference (B) Beats (C) Stationary waves (D) Doppler's effect For an ideal gas, the potential energy associated with its molecules is: (A) Maximum (B) Zero (C) $\frac{1}{2}KX_o^2$ (D) $\frac{1}{2}KX_o$ 16 · A wheel of radius 50 cm having an angular speed 5 rad / sec will have linear speed: (A) $1.5ms^{-1}$ (B) $2.5ms^{-1}$ (C) $3.5ms^{-1}$ (D) $4.5ms^{-1}$ The resultant of two forces $3N$ and $4N$ acting parallel to each other is: (A) $7N$ (B) $1N$ (C) $5N$ (D) $4N$		(A) TO 11			
The training in the measurement of kinetic energy is: (A) 11% (B) 8% (C) 6% (D) 1% 7 • SI unit pressure of gas is: (A) Nm^{-2} (B) Nm (C) N^2m^{-1} (D) N^2m Hot igneous rocks usually in molten or partly molten state are found in the depth of: (A) 5 km (B) 10 km (C) 15 km (D) 20 km Angle between ray of light and wave front is: (A) 0° (B) 60° (C) 120° (D) 90° Solid angle subtended at the center by a sphere is: (A) 2π (B) 4π (C) 6π (D) 8π If 30 waves per second pass through a medium at speed of $30ms^{-1}$, the wavelength is: (A) 30 m (B) 15 m (C) 1 m (D) 900 m 12° $\hat{i} \cdot (\hat{j} \times \hat{k})$ is equal to: (A) \hat{k} (B) 1 (C) Null vector (D) Zero Information carrying capacity of optical fibre is called: (A) Capacity (B) Band width (C) Immunity (D) Ability 14 • Radar system is an application of: (A) Interference (B) Beats (C) Stationary waves (D) Doppler's effect 15 For an ideal gas, the potential energy associated with its molecules is: (A) Maximum (B) Zero (C) $\frac{1}{2}KY_o^2$ (D) $\frac{1}{2}KY_o$ 16 • A wheel of radius 50 cm having an angular speed 5 rad / sec will have linear speed: (A) $1.5ms^{-1}$ (B) $2.5ms^{-1}$ (C) $3.5ms^{-1}$ (D) $4.5ms^{-1}$ The resultant of two forces 3N and 4N acting parallel to each other is: (A) $7N$ (B) $1N$ (C) $5N$ (D) $4N$	6		Halt	(C) One fourth	(D) Four time
(A) 11% (B) 8% (C) 6% (D) 1% 7 • SI unit pressure of gas is: (A) Nm ⁻² (B) Nm (C) N ² m ⁻¹ (D) N ² m Hot igneous rocks usually in molten or partly molten state are found in the depth of: (A) 5 km (B) 10 km (C) 15 km (D) 20 km Angle between ray of light and wave front is: (A) 0° (B) 60° (C) 120° (D) 90° 10 • Solid angle subtended at the center by a sphere is: (A) 2π (B) 4π (C) 6π (D) 8π 11 If 30 waves per second pass through a medium at speed of 30ms ⁻¹ , the wavelength is: (A) 30 m (B) 15 m (C) 1 m (D) 900 m 12 · i. (j × k) is equal to: (A) k (B) 1 (C) Null vector (D) Zero Information carrying capacity of optical fibre is called: (A) Capacity (B) Band width (C) Immunity (D) Ability 14 · Radar system is an application of: (A) Interference (B) Beats (C) Stationary waves (D) Doppler's effect For an ideal gas, the potential energy associated with its molecules is: (A) Maximum (B) Zero (C) ½ KX _o ² (D) ½ KX _o 16 · A wheel of radius 50 cm having an angular speed 5 rad / sec will have linear speed: (A) 1.5ms ⁻¹ (B) 2.5ms ⁻¹ (C) 3.5ms ⁻¹ (D) 4.5ms ⁻¹ The resultant of two forces 3N and 4N acting parallel to each other is: (A) 7N (B) 1N (C) 5N (D) 4N		maximum uncertainty in the maximum	neasurement of	mass and velocity	are 2% and 3%, the
SI unit pressure of gas is: (A) Nm^{-2} (B) Nm (C) N^2m^{-1} (D) N^2m 8 Hot igneous rocks usually in molten or partly molten state are found in the depth of: (A) 5 km (B) 10 km (C) 15 km (D) 20 km 9 Angle between ray of light and wave front is: (A) 0° (B) 60° (C) 120° (D) 90° 10 Solid angle subtended at the center by a sphere is: (A) 2π (B) 4π (C) 6π (D) 8π 11 If 30 waves per second pass through a medium at speed of $30ms^{-1}$, the wavelength is: (A) 30 m (B) 15 m (C) 1 m (D) 900 m 12 $\frac{1}{2}$ $\hat{i} \cdot (\hat{j} \times \hat{k})$ is equal to: (A) \hat{k} (B) 1 (C) Null vector (D) Zero 13 Information carrying capacity of optical fibre is called: (A) Capacity (B) Band width (C) Immunity (D) Ability 14 Radar system is an application of: (A) Interference (B) Beats (C) Stationary waves (D) Doppler's effect 15 For an ideal gas, the potential energy associated with its molecules is: (A) Maximum (B) Zero (C) $\frac{1}{2}KX_o^2$ (D) $\frac{1}{2}KX_o$ 16 A wheel of radius 50 cm having an angular speed 5 rad / sec will have linear speed: (A) $1.5ms^{-1}$ (B) $2.5ms^{-1}$ (C) $3.5ms^{-1}$ (D) $4.5ms^{-1}$ The resultant of two forces 3N and 4N acting parallel to each other is: (A) 7N (B) 1N (C) 5N (D) 4N		7.45		52554 52 S2505 C	ļ
(A) Nm^{-2} (B) Nm (C) N^2m^{-1} (D) N^2m 8 Hot igneous rocks usually in molten or partly molten state are found in the depth of: (A) 5 km (B) 10 km (C) 15 km (D) 20 km 9, Angle between ray of light and wave front is: (A) 0° (B) 60° (C) 120° (D) 90° 10 • Solid angle subtended at the center by a sphere is: (A) 2π (B) 4π (C) 6π (D) 8π 11 If 30 waves per second pass through a medium at speed of $30ms^{-1}$, the wavelength is: (A) 30 m (B) 15 m (C) 1 m (D) 900 m 12 · $\hat{i} \cdot (\hat{j} \times \hat{k})$ is equal to: (A) \hat{k} (B) 1 (C) Null vector (D) Zero 13- Information carrying capacity of optical fibre is called: (A) Capacity (B) Band width (C) Immunity (D) Ability 14 · Radar system is an application of: (A) Interference (B) Beats (C) Stationary waves (D) Doppler's effect 15 For an ideal gas, the potential energy associated with its molecules is: (A) Maximum (B) Zero (C) $\frac{1}{2}KX_o^2$ (D) $\frac{1}{2}KX_o$ 16 · A wheel of radius 50 cm having an angular speed 5 rad / sec will have linear speed: (A) $1.5ms^{-1}$ (B) $2.5ms^{-1}$ (C) $3.5ms^{-1}$ (D) $4.5ms^{-1}$ The resultant of two forces 3N and 4N acting parallel to each other is: (A) 7N (B) 1N (C) 5N (D) 4N	7 .	SI unit pressure of cas is:	3%	(C) 6%	(D) 1%
(A) 5 km (B) 10 km (C) 15 km (D) 20 km 9. Angle between ray of light and wave front is: (A) 0° (B) 60° (C) 120° (D) 90° 10. Solid angle subtended at the center by a sphere is: (A) 2π (B) 4π (C) 6π (D) 8π 11. If 30 waves per second pass through a medium at speed of $30ms^{-1}$, the wavelength is: (A) 30 m (B) 15 m (C) 1 m (D) 900 m 12. 3° $1.(\hat{j} \times \hat{k})$ is equal to: (A) \hat{k} (B) 1 (C) Null vector (D) Zero 13. Information carrying capacity of optical fibre is called: (A) Capacity (B) Band width (C) Immunity (D) Ability 14. Radar system is an application of: (A) Interference (B) Beats (C) Stationary waves (D) Doppler's effect 15. For an ideal gas, the potential energy associated with its molecules is: (A) Maximum (B) Zero (C) $\frac{1}{2}KX_{o}^{2}$ (D) $\frac{1}{2}KX_{o}^{2}$ 16. A wheel of radius 50 cm having an angular speed 5 rad / sec will have linear speed: (A) $1.5ms^{-1}$ (B) $2.5ms^{-1}$ (C) $3.5ms^{-1}$ (D) $4.5ms^{-1}$ The resultant of two forces $3N$ and $4N$ acting parallel to each other is: (A) $7N$ (B) $1N$ (C) $5N$ (D) $4N$		1000	6		
(A) 5 km (B) 10 km (C) 15 km (D) 20 km 9. Angle between ray of light and wave front is: (A) 0° (B) 60° (C) 120° (D) 90° 10. Solid angle subtended at the center by a sphere is: (A) 2π (B) 4π (C) 6π (D) 8π 11. If 30 waves per second pass through a medium at speed of $30ms^{-1}$, the wavelength is: (A) 30 m (B) 15 m (C) 1 m (D) 900 m 12. 3° $1.(\hat{j} \times \hat{k})$ is equal to: (A) \hat{k} (B) 1 (C) Null vector (D) Zero 13. Information carrying capacity of optical fibre is called: (A) Capacity (B) Band width (C) Immunity (D) Ability 14. Radar system is an application of: (A) Interference (B) Beats (C) Stationary waves (D) Doppler's effect 15. For an ideal gas, the potential energy associated with its molecules is: (A) Maximum (B) Zero (C) $\frac{1}{2}KX_{o}^{2}$ (D) $\frac{1}{2}KX_{o}^{2}$ 16. A wheel of radius 50 cm having an angular speed 5 rad / sec will have linear speed: (A) $1.5ms^{-1}$ (B) $2.5ms^{-1}$ (C) $3.5ms^{-1}$ (D) $4.5ms^{-1}$ The resultant of two forces $3N$ and $4N$ acting parallel to each other is: (A) $7N$ (B) $1N$ (C) $5N$ (D) $4N$		$(A) Nm^{-2} $ (B)	Nm	(C) $N^2 m^{-1}$	(D) M^2
(A) 5 km (B) 10 km (C) 15 km (D) 20 km 9. Angle between ray of light and wave front is: (A) 0° (B) 60° (C) 120° (D) 90° 10. Solid angle subtended at the center by a sphere is: (A) 2π (B) 4π (C) 6π (D) 8π 11. If 30 waves per second pass through a medium at speed of $30ms^{-1}$, the wavelength is: (A) 30 m (B) 15 m (C) 1 m (D) 900 m 12. 3° $1.(\hat{j} \times \hat{k})$ is equal to: (A) \hat{k} (B) 1 (C) Null vector (D) Zero 13. Information carrying capacity of optical fibre is called: (A) Capacity (B) Band width (C) Immunity (D) Ability 14. Radar system is an application of: (A) Interference (B) Beats (C) Stationary waves (D) Doppler's effect 15. For an ideal gas, the potential energy associated with its molecules is: (A) Maximum (B) Zero (C) $\frac{1}{2}KX_{o}^{2}$ (D) $\frac{1}{2}KX_{o}^{2}$ 16. A wheel of radius 50 cm having an angular speed 5 rad / sec will have linear speed: (A) $1.5ms^{-1}$ (B) $2.5ms^{-1}$ (C) $3.5ms^{-1}$ (D) $4.5ms^{-1}$ The resultant of two forces $3N$ and $4N$ acting parallel to each other is: (A) $7N$ (B) $1N$ (C) $5N$ (D) $4N$	8	Hot igneous rocks usually in mo	olten or partly n	nolten state are fou	nd in the depth of :
Solid angle subtended at the center by a sphere is: (A) 2π (B) 4π (C) 6π (D) 8π If 30 waves per second pass through a medium at speed of $30ms^{-1}$, the wavelength is: (A) 30 m (B) 15 m (C) 1 m (D) 900 m 12 \circ $\hat{i} \cdot (\hat{j} \times \hat{k})$ is equal to: (A) \hat{k} (B) 1 (C) Null vector (D) Zero Information carrying capacity of optical fibre is called: (A) Capacity (B) Band width (C) Immunity (D) Ability Radar system is an application of: (A) Interference (B) Beats (C) Stationary waves (D) Doppler's effect For an ideal gas, the potential energy associated with its molecules is: (A) Maximum (B) Zero (C) $\frac{1}{2}KX_o^2$ (D) $\frac{1}{2}KX_o$ A wheel of radius 50 cm having an angular speed 5 rad / sec will have !incar speed: (A) $1.5ms^{-1}$ (B) $2.5ms^{-1}$ (C) $3.5ms^{-1}$ (D) $4.5ms^{-1}$ The resultant of two forces 3N and 4N acting parallel to each other is: (A) $7N$ (B) $1N$ (C) $5N$ (D) $4N$					97-2-20
Solid angle subtended at the center by a sphere is: (A) 2π (B) 4π (C) 6π (D) 8π If 30 waves per second pass through a medium at speed of $30ms^{-1}$, the wavelength is: (A) 30 m (B) 15 m (C) 1 m (D) 900 m 12 \circ $\hat{i} \cdot (\hat{j} \times \hat{k})$ is equal to: (A) \hat{k} (B) 1 (C) Null vector (D) Zero Information carrying capacity of optical fibre is called: (A) Capacity (B) Band width (C) Immunity (D) Ability Radar system is an application of: (A) Interference (B) Beats (C) Stationary waves (D) Doppler's effect For an ideal gas, the potential energy associated with its molecules is: (A) Maximum (B) Zero (C) $\frac{1}{2}KX_o^2$ (D) $\frac{1}{2}KX_o$ A wheel of radius 50 cm having an angular speed 5 rad / sec will have !incar speed: (A) $1.5ms^{-1}$ (B) $2.5ms^{-1}$ (C) $3.5ms^{-1}$ (D) $4.5ms^{-1}$ The resultant of two forces 3N and 4N acting parallel to each other is: (A) $7N$ (B) $1N$ (C) $5N$ (D) $4N$	9,	Angle between ray of light and	wave front is:	(C) 13 KIII	(D) 20 km
Solid angle subtended at the center by a sphere is: (A) 2π (B) 4π (C) 6π (D) 8π If 30 waves per second pass through a medium at speed of $30ms^{-1}$, the wavelength is: (A) 30 m (B) 15 m (C) 1 m (D) 900 m 12 \circ $\hat{i} \cdot (\hat{j} \times \hat{k})$ is equal to: (A) \hat{k} (B) 1 (C) Null vector (D) Zero Information carrying capacity of optical fibre is called: (A) Capacity (B) Band width (C) Immunity (D) Ability Radar system is an application of: (A) Interference (B) Beats (C) Stationary waves (D) Doppler's effect For an ideal gas, the potential energy associated with its molecules is: (A) Maximum (B) Zero (C) $\frac{1}{2}KX_o^2$ (D) $\frac{1}{2}KX_o$ 16 A wheel of radius 50 cm having an angular speed 5 rad / sec will have linear speed: (A) $1.5ms^{-1}$ (B) $2.5ms^{-1}$ (C) $3.5ms^{-1}$ (D) $4.5ms^{-1}$ The resultant of two forces 3N and 4N acting parallel to each other is: (A) $7N$ (B) $1N$ (C) $5N$ (D) $4N$		(A) 0° (B)	60°		(7)
(A) 2π (B) 4π (C) 6π (D) 8π If 30 waves per second pass through a medium at speed of $30ms^{-1}$, the wavelength is: (A) 30 m (B) 15 m (C) 1 m (D) 900 m 12 \circ $\hat{i} \cdot (\hat{j} \times \hat{k})$ is equal to: (A) \hat{k} (B) 1 (C) Null vector (D) Zero Information carrying capacity of optical fibre is called: (A) Capacity (B) Band width (C) Immunity (D) Ability Radar system is an application of: (A) Interference (B) Beats (C) Stationary waves (D) Doppler's effect For an ideal gas, the potential energy associated with its molecules is: (A) Maximum (B) Zero (C) $\frac{1}{2}KX_o^2$ (D) $\frac{1}{2}KX_o$ 16 A wheel of radius 50 cm having an angular speed 5 rad / sec will have linear speed: (A) $1.5ms^{-1}$ (B) $2.5ms^{-1}$ (C) $3.5ms^{-1}$ (D) $4.5ms^{-1}$ The resultant of two forces 3N and 4N acting parallel to each other is: (A) $7N$ (B) $1N$ (C) $5N$ (D) $4N$	10 ,		iter by a sphere	(C) 120°	(D) 90°
If 30 waves per second pass through a medium at speed of $30ms^{-1}$, the wavelength is: (A) 30 m (B) 15 m (C) 1 m (D) 900 m 12 $^{\circ}$ $\hat{i} \cdot (\hat{j} \times \hat{k})$ is equal to: (A) \hat{k} (B) 1 (C) Null vector (D) Zero Information carrying capacity of optical fibre is called: (A) Capacity (B) Band width (C) Immunity (D) Ability 14 $^{\circ}$ Radar system is an application of: (A) Interference (B) Beats (C) Stationary waves (D) Doppler's effect 15 For an ideal gas, the potential energy associated with its molecules is: (A) Maximum (B) Zero (C) $\frac{1}{2}KX_o^2$ (D) $\frac{1}{2}KX_o$ 16 $^{\circ}$ A wheel of radius 50 cm having an angular speed 5 rad / sec will have linear speed: (A) $1.5ms^{-1}$ (B) $2.5ms^{-1}$ (C) $3.5ms^{-1}$ (D) $4.5ms^{-1}$ The resultant of two forces 3N and 4N acting parallel to each other is: (A) 7N (B) 1N (C) 5N (D) 4N		(4) 0			
11 30 waves per second pass through a medium at speed of $30ms^{-1}$, the wavelength is: (A) 30 m (B) 15 m (C) 1 m (D) 900 m 12 2 $\hat{i} \cdot (\hat{j} \times \hat{k})$ is equal to: (A) \hat{k} (B) 1 (C) Null vector (D) Zero Information carrying capacity of optical fibre is called: (A) Capacity (B) Band width (C) Immunity (D) Ability 14 Radar system is an application of: (A) Interference (B) Beats (C) Stationary waves (D) Doppler's effect 15 For an ideal gas, the potential energy associated with its molecules is: (A) Maximum (B) Zero (C) $\frac{1}{2}KX_o^2$ (D) $\frac{1}{2}KX_o$ 16 A wheel of radius 50 cm having an angular speed 5 rad / sec will have linear speed: (A) $1.5ms^{-1}$ (B) $2.5ms^{-1}$ (C) $3.5ms^{-1}$ (D) $4.5ms^{-1}$ The resultant of two forces 3N and 4N acting parallel to each other is: (A) 7N (B) 1N (C) 5N (D) 4N	11	(2)		(C) 6π	(D) 8π
(A) 30 m (B) 15 m (C) 1 m (D) 900 m 12 \circ $\hat{i} \cdot (\hat{j} \times \hat{k})$ is equal to : (A) \hat{k} (B) 1 (C) Null vector (D) Zero 13 Information carrying capacity of optical fibre is called : (A) Capacity (B) Band width (C) Immunity (D) Ability 14 \circ Radar system is an application of : (A) Interference (B) Beats (C) Stationary waves (D) Doppler's effect 15 For an ideal gas, the potential energy associated with its molecules is : (A) Maximum (B) Zero (C) $\frac{1}{2}KX_o^2$ (D) $\frac{1}{2}KX_o$ 16 \circ A wheel of radius 50 cm having an angular speed 5 rad / sec will have linear speed : (A) $1.5ms^{-1}$ (B) $2.5ms^{-1}$ (C) $3.5ms^{-1}$ (D) $4.5ms^{-1}$ The resultant of two forces 3N and 4N acting parallel to each other is : (A) $7N$ (B) $1N$ (C) $5N$ (D) $4N$,	11 30 waves per second pass thro	ough a medium	at speed of 30ms	, the wavelength is:
12-5 $i \cdot (j \times k)$ is equal to :	10	$(\Lambda) 30 \text{ m} \qquad (B)$	15 m	(C) 1 m	(D) 900 m
Information carrying capacity of optical fibre is called: (A) Capacity (B) Band width (C) Immunity (D) Ability Radar system is an application of: (A) Interference (B) Beats (C) Stationary waves (D) Doppler's effect For an ideal gas, the potential energy associated with its molecules is: (A) Maximum (B) Zero (C) \frac{1}{2}KX_o^2 (D) \frac{1}{2}KX_o 16 - A wheel of radius 50 cm having an angular speed 5 rad / sec will have linear speed: (A) 1.5ms^{-1} (B) 2.5ms^{-1} (C) 3.5ms^{-1} (D) 4.5ms^{-1} The resultant of two forces 3N and 4N acting parallel to each other is: (A) 7N (B) 1N (C) 5N (D) 4N	12 /5	$\hat{i} \cdot (\hat{j} \times \hat{k})$ is equal to :			(2) 300 H
Information carrying capacity of optical fibre is called: (A) Capacity (B) Band width (C) Immunity (D) Ability Radar system is an application of: (A) Interference (B) Beats (C) Stationary waves (D) Doppler's effect For an ideal gas, the potential energy associated with its molecules is: (A) Maximum (B) Zero (C) \frac{1}{2}KX_o^2 (D) \frac{1}{2}KX_o 16 - A wheel of radius 50 cm having an angular speed 5 rad / sec will have linear speed: (A) 1.5ms^{-1} (B) 2.5ms^{-1} (C) 3.5ms^{-1} (D) 4.5ms^{-1} The resultant of two forces 3N and 4N acting parallel to each other is: (A) 7N (B) 1N (C) 5N (D) 4N	1	(A) Î			
(A) Capacity (B) Band width (C) Immunity (D) Ability Radar system is an application of: (A) Interference (B) Beats (C) Stationary waves (D) Doppler's effect For an ideal gas, the potential energy associated with its molecules is: (A) Maximum (B) Zero (C) $\frac{1}{2}KX_o^2$ (D) $\frac{1}{2}KX_o$ A wheel of radius 50 cm having an angular speed 5 rad / sec will have linear speed: (A) $1.5ms^{-1}$ (B) $2.5ms^{-1}$ (C) $3.5ms^{-1}$ (D) $4.5ms^{-1}$ The resultant of two forces 3N and 4N acting parallel to each other is: (A) 7N (B) 1N (C) 5N (D) 4N	130			(C) Null vector	(D) Zero
Radar system is an application of: (A) Interference (B) Beats (C) Stationary waves (D) Doppler's effect For an ideal gas, the potential energy associated with its molecules is: (A) Maximum (B) Zero (C) $\frac{1}{2}KX_o^2$ (D) $\frac{1}{2}KX_o$ 16. A wheel of radius 50 cm having an angular speed 5 rad/sec will have linear speed: (A) $1.5ms^{-1}$ (B) $2.5ms^{-1}$ (C) $3.5ms^{-1}$ (D) $4.5ms^{-1}$ The resultant of two forces 3N and 4N acting parallel to each other is: (A) 7N (B) 1N (C) 5N (D) 4N	L	and the second s			
(A) Interference (B) Beats (C) Stationary waves (D) Doppler's effect For an ideal gas, the potential energy associated with its molecules is: (A) Maximum (B) Zero (C) $\frac{1}{2}KX_o^2$ (D) $\frac{1}{2}KX_o$ A wheel of radius 50 cm having an angular speed 5 rad / sec will have linear speed: (A) $1.5ms^{-1}$ (B) $2.5ms^{-1}$ (C) $3.5ms^{-1}$ (D) $4.5ms^{-1}$ The resultant of two forces 3N and 4N acting parallel to each other is: (A) $7N$ (B) $1N$ (C) $5N$ (D) $4N$	14 -	(A) Capacity (B)	Band width	(C) Immunity	(D) Ability
(C) Stationary waves (D) Doppler's effect For an ideal gas, the potential energy associated with its molecules is: (A) Maximum (B) Zero (C) $\frac{1}{2}KX_o^2$ (D) $\frac{1}{2}KX_o$ A wheel of radius 50 cm having an angular speed 5 rad / sec will have linear speed: (A) $1.5ms^{-1}$ (B) $2.5ms^{-1}$ (C) $3.5ms^{-1}$ (D) $4.5ms^{-1}$ The resultant of two forces 3N and 4N acting parallel to each other is: (A) 7N (B) 1N (C) 5N (D) 4N	18	Radar system is an application of	f:		
For an ideal gas, the potential energy associated with its molecules is: (A) Maximum (B) Zero (C) $\frac{1}{2}KX_o^2$ (D) $\frac{1}{2}KX_o$ 16. A wheel of radius 50 cm having an angular speed 5 rad / sec will have linear speed: (A) $1.5ms^{-1}$ (B) $2.5ms^{-1}$ (C) $3.5ms^{-1}$ (D) $4.5ms^{-1}$ The resultant of two forces 3N and 4N acting parallel to each other is: (A) 7N (B) 1N (C) 5N (D) 4N		(A) Interference (B)	Beats		
For an ideal gas, the potential energy associated with its molecules is: (A) Maximum (B) Zero (C) $\frac{1}{2}KX_o^2$ (D) $\frac{1}{2}KX_o$ 16. A wheel of radius 50 cm having an angular speed 5 rad / sec will have linear speed: (A) $1.5ms^{-1}$ (B) $2.5ms^{-1}$ (C) $3.5ms^{-1}$ (D) $4.5ms^{-1}$ The resultant of two forces 3N and 4N acting parallel to each other is: (A) 7N (B) 1N (C) 5N (D) 4N		(C) Stationary waves (D)	Donnler's effe	ect	
(A) Maximum (B) Zero (C) $\frac{1}{2}KX_o^2$ (D) $\frac{1}{2}KX_o$ 16. A wheel of radius 50 cm having an angular speed 5 rad / sec will have linear speed: (A) $1.5ms^{-1}$ (B) $2.5ms^{-1}$ (C) $3.5ms^{-1}$ (D) $4.5ms^{-1}$ 17 The resultant of two forces 3N and 4N acting parallel to each other is: (A) 7N (B) 1N (C) 5N (D) 4N	15	For an ideal gas, the potential end	ergy associated	with its molecules	ie ,
A wheel of radius 50 cm having an angular speed 5 rad / sec will have linear speed: (A) $1.5ms^{-1}$ (B) $2.5ms^{-1}$ (C) $3.5ms^{-1}$ (D) $4.5ms^{-1}$ The resultant of two forces 3N and 4N acting parallel to each other is: (A) 7N (B) 1N (C) 5N (D) 4N		(4) () () () () () () () () (
A wheel of radius 50 cm having an angular speed 5 rad / sec will have linear speed: (A) 1.5ms ⁻¹ (B) 2.5ms ⁻¹ (C) 3.5ms ⁻¹ (D) 4.5ms ⁻¹ The resultant of two forces 3N and 4N acting parallel to each other is: (A) 7N (B) 1N (C) 5N (D) 4N	1	(A) Maximum (B)	Zero	(C) $\frac{1}{2}KX_{o}^{2}$	(D) $\frac{1}{K}X$
(A) 1.5ms ⁻¹ (B) 2.5ms ⁻¹ (C) 3.5ms ⁻¹ (D) 4.5ms ⁻¹ The resultant of two forces 3N and 4N acting parallel to each other is: (A) 7N (B) 1N (C) 5N (D) 4N	16 - 7	A wheel of radius 50 cm having	n angular enece	2 d 5 rad / see!!! 1	2
(A) 7N (B) 1N (C) 5N (D) 4N		1 7 -1	anguar spect	u Jiau / sec will ha	ive inear speed:
(A) 7N (B) 1N (C) 5N (D) 4N	17	A) $1.5ms^{-1}$ (B) 2	$.5ms^{-1}$	(C) $3.5ms^{-1}$	(D) $4.5ms^{-1}$
(A) 7N (B) 1N (C) 5N (D) 4N	17	the resultant of two forces 3N an	d 4N acting par	allel to each other	is:
	(A N TO Y	•		1
				The state of the s	Type) - 9000 (6478)

Roll No PHYSI PAPER								
	SECTION-1 LHR-42-11-18							
. Wr	ite short answers to any EIGHT (8) questions:	6						
• (i)	Calculate the distance covered by the light in free space in one year.							
• (ii)	Show that the Einstein's equation $E = mc^2$ is dimensionally correct.							
•(iii)	What do you mean by random error and systematic error?							
(iv)	Add the following upto appropriate precision 3.125, 1.2, 0.038.							
(v)	What is the unit vector in the direction of vector $\vec{\hat{A}} = 2\hat{i} - \hat{j} + 2\hat{k}$?	3						
(vi)	Can the dot product of two vectors be equal to the product of their magnitudes? Explain.							
(vii)	State first and second condition of equilibrium alongwith their equation.							
(viii)	Water flows out from a pipe at $5kgs^{-1}$ and its velocity changes from $4ms^{-1}$ to zero on striking the wall. Find the force exerted by the water on the wall.							
. (ix)	Show that range R and maximum range R_{max} are related as $\frac{R}{R_{\text{max}}} = \sin 2\theta$							
√(x)	Can the velocity of an object reverse the direction when acceleration is constant? If so give an example?							
o(xi)	Define viscosity and drag force.							
»(xii)	Explain the working of carburetor of a motorcar using Bernoulli's principle.							
3. Wr	ite short answers to any EIGHT (8) questions :	6						
~ (i)	Derive work energy principle.							
٥(ii)	Explain methods of : (i) Direct combustion. (ii) Fermentation to convert biomass into fuels.							
`(iii)	A cup is dropped from a certain height, which breaks into pieces. What energy changes are involved?							
. (iv)	When mud flies off the tyre of a moving bicycle, in what direction does it fly?							
⊸(v)	What is difference between spin angular momentum and orbital angular momentum?							
~(vi)	Define radian and find how many degrees are in one radian.							
.(vii)	Does period depend on amplitude of vibrating body? Explain.							
. (viii)	Define restoring force and what is its direction?							
_ (ix)	At which positions the velocity of a simple harmonic oscillator is maximum and minimum?							
-(x)	How are beats useful in tuning musical instruments?							
(xi)	Astronomers use the Doppler effect to calculate the speed of distance stars. How?							
(xii)	What is the affect on phase of a wave when it is reflected from a boundary?							
	(Turn Over)							

5

3

5

3

5

3

5

3

5

3

- , (i) Under what conditions two or more sources of light behave as coherent sources?
- (ii) Why the Polaroid sunglasses are better than ordinary sunglasses?
- (iii) An oil film spreading over a wet footpath shows colours. Explain how does it happen?
- (iv) One can buy a cheap microscope for the use by the children. The images seen in such a microscope have coloured edges. Why is this so?
- (v) How the light signal is transmitted through the optical fibre?
- '(vi) Give an example of a natural process that involves an increase in entropy.
- (vii) Why is the average velocity of the molecules in a gas zero but the average of the square of velocities is not zero?
- (viii) Give the statement of second law of thermodynamics and Carnot's theorem.
- (ix) Is it possible to convert internal energy into mechanical energy? Explain with an example.

SECTION - II

Note: Attempt any THREE questions.

- 5. (a) Define vector product or cross product. Explain with right hand rule and give four characteristics of cross product.
 - •(b) Find angle of projection of a projectile for which its maximum height and the horizontal range are equal.
- 6. (a) What is absolute gravitational potential energy? Derive an expression for it.
 - What would be the orbiting speed to launch a satellite in a circular orbit 900 km above the surface of the earth? Mass of earth = $6 \times 10^{24} kg$, Radius of earth = 6400 km
- 7. (a) Define and explain entropy with an example. Does entropy decrease for reversible process? Why absolute value of entropy can not be determined?
 - (b) A heat engine performs 100 J of work and at the same time rejects 400 J of heat energy to the cold reservoir. What is the efficiency of the engine?
- 8. -(a) What is simple pendulum? Show that its motion is simple harmonic. Also derive an expression for its time period.
 - (b) An organ pipe has a length of 50 cm. Find the frequency of its fundamental note and the next harmonic when it is/ at both ends. Speed of sound = $350 \, ms^{-1}$.
- 9. (a) Discuss in detail the Young's double slit experiment to study the interference of light.
 - (b) A glass light pipe in air will totally internally reflect a light ray if its angle of incidence is at least 39°. What is minimum angle for total internal reflection if pipe is in water (n = 1.33)?