				2010 (4)		Roll No		1
iper Cod	e			2019 (A)	RT-I (11 th CLAS	SS)	-11-G1-1	9
	2	1 / 1				MTN	-11-41	,
umber:	- n	ADED-I	GROUP-1	(NEW SC	E E E STATE OF THE	MAX	TMUM MAKKS: 17	
HYSIC		20 11	mutac	U.D.			t a shoice which you	
lote: Yo	ou have	e four choice	s for each ob	ective type that questi	on number. Use n	narker or p	he choice which you cen to fill the bubbles. tempt as many	
hink is co	orrect,	Illi titat our	bubbles wi	l result in Z	ero mark in that q	No ere	dit will be awarded in	
Jutting o	r mmn as giv	en in objecti	ve type questi	on paper at	nd leave others blues on this sheet of C	BJECTIV	dit will be awarded in E PAPER.	<i>.</i>
:ase BUB	BLES	are not fille	d. Do not so	ve question				
		is the base qu				(D) Density		
(1)	1.00		(B) Volume		Cengar	N 10		
(2)	16 1000	et count is 10	kg, then 8.00	$\times 10^3 kg$ has	significant figures:	200,00000 00		
(2)				41	1 1	1		
	(A) 1	· ···- Lualonii	of a projecti	le becomes o	loubled. The time	of flight wil	become:-	
(3)			(B) Same	(C	2) 3 times	(D) 4 time	s	
	(A) D	ouble		$-4\hat{i} + 3\hat{i}$	is:			
(4)			iven vector A	,	$4\hat{i} + 3\hat{j}$	(D) $\sqrt{4i}$	+ 3 j	
	(A)	$\frac{4\hat{i} + 3\hat{j}}{25}$	(B) 1	(0	$(2) \frac{4\hat{i} + 3\hat{j}}{5}$	(D) V	5	•
(5)		20116	a projectile is:			2Vi :	$\sin \theta$	
(5)	Time	$Vi \sin \theta$	(B) $\frac{Vi \sin \theta}{2g}$	9 (C) $\frac{V_i^2 \sin \theta}{a}$	(D)	g	¥i
	(A)	g	(D) 2g	intional pull	g Lof:			
(6)			lue to the grav	rational P	(C) Earth	(D) Mar	S	
	(A)) Sun	(B) Moon					
(7)			tia for a partic	C IS ELVOIT -	(C) m^2r	(D) mr	-1	
	(A	m^2r^2	(B) mr^2		(C)			8
(8)	S.	unit of angu	lar momentun (B) Kg n	1 15: -2 e -1	(C) Kg m ⁻¹ s	(D) Kg	m^2s^{-2}	
	(A	$(Kg m^2 s^{-1})$			c			
(9)			s is the study o	t the beliavi	(C) Liquids in mo	tion (D) L	iquids and gasses in mot	ion
		A) Fluid at re		ids at rest	(0) = 1			
(1	0) B	llood has den	sity equal to the	int of:	(C) Thick Tar	(D) W	ater	
	(A) Oil	(B) Hon					
(1			n S.H.M is pro		(() Time Dellou		requency	
	((A) Velocity	(B) Dis	placement	ure is "V" and now	if pressure i	s doubled then	
(12)	If speed of so	und in air at a	given pressi	He is , min	•	22	
		new speed w (A) 2V	(B) V/		(C) V	(D)	4 V	
72		(A) &	g away from E					
((13)	(A) Red shif		ae shift	(C) Green shift	(D)	Yellow shift	
	(1.4)	to case of po	oint source, sh	ape of the wa	avefront is:	2000	mur isteal	
	(14)	(A) Plane	(B) Sp	herical	(C) Circular	(D)	Ellipitical	
82	(15)		of tale	scope is:	p		Ť.	
	(15)	(A) f i f	(B) <i>f</i>	- f.	(C) $\frac{f_o}{f}$	(D)	$\frac{f_{\alpha}}{f_{\alpha}}$	
		$(A) \int_{0}^{\infty} + \int$		tha 1 ⁵¹ lat	(C) $\frac{f_0}{f_c}$ w of thermodynami (C) $W = Q - \frac{f_0}{f_c}$	c is written	as:	
	(16)	In case of a	ΔU (B)	V = Q	(C) $W = Q -$		$W = -\Delta U$	
	(17)	If temperat	ure of sink is c	ecreased, th	e efficiency of Carr (C) Remain sa	ame (D) First increases then dec	ereases
	1000 1000	(A) Decre		ncreases	(C) Remain se	antic	9(A)-31000 (MULTA)	
					17(Ob])(🕶)-201.	Mul Singe Time	ik.

Roll No:

INTERMEDIATE PART-I (11th CLASS)

PAPER-I GROUP-I (NEW SCHEME) PHYSICS

MAXIMUM MARKS: 68

SUBJECTIVE

NOTE: Write same question number and its part number on answer book, as given in the question paper. - SECTION-I $8 \times 2 = 16$ Attempt any eight parts. What is the cause of random error and how can it be reduce? 2. If a precise measurement is also an accurate measurement. Explain your answer. (i) (ii) Is it possible to add 5 in 2i? Explain. Can the magnitude of a vector ever be negative? Explain. (iii) If a vector lies in x - y plane. Is it possible, one of its rectangular components is zero? Explain. (iv) (vii) Explain Geyser and Aquifer. Define conservative force. Give at least its two examples. (v) (vi) Why a fog droplet appear to be suspended in air? Derive the relation between speed and pressure of the fluid. (viii) (ix) What is damping and give its one application. How does resonance play role in heating and cooking food? (x) If mass of a simple pendulum is doubled, what is the effect on its period? Explain. (xi) $8 \times 2 = 16$ (xii) Attempt any eight parts. What are two differences between uniform and variable velocity? 3. Can the velocity of an object reverse the direction when acceleration is constant? (i) (ii) If so, give an example. Explain the two differences between Elastic and in-elastic collision. How would you find the distravelled by velocity-time graph? (iii) (iv) (where θ is in radian) Show that: $S = r\theta$ (v) Show that velocity of hoop rolling down on an inclined plane is; $v = \sqrt{gh}$ (vi) What is meant by moment of inertia? Explain. Why does a diver change his body positions before and after diving in the pool? (vii) Write down two differences between Transverse and Longitudinal waves. (viii) (ix) Explain the terms Crest and Trough Why does sound travel faster in solids than in gases? (x) (ix)

How are beats useful in tuning musical instruments? Explain. $6 \times 2 = 12$ (xii) Attempt any six parts. How is the distance between interference fringes affected by the separation between (i)

the slits of Young's experiment? Can fringes disappear? An oil film spreading over a wet footpath shows colours. Explain how does it happen? Write two differences between interference and diffraction phenomena of light waves. (ii) Describe two causes of power losses in optical fibre during transmission of light signals. (iii) Why would it be advantageous to use blue light with a compound microscope? (iv)

Specific heat of a gas at constant pressure is greater than specific heat at constant volume. Why? (v) Does entropy of a system increase or decrease due to friction? Explain. (vi) Give an example of a natural process that involves an increase in entropy. (vii)

(viii) Define triple point of water and write its equation.

(ix) SECTION-II $3 \times 8 = 24$ NOTE: - Attempt any three questions. What is the difference between Petrol Engine and Diesel engine? 5 5.(a)Explain the four stroke of Petrol Engine. Derive a relation for the time period of a simple pendulum by using Dimensional analysis. What is Torque? Derive an expression for torque due to force acting on a rigid body. 5 (b) A bomber dropped a bomb at a height of 490m when its velocity along 6.(a) 3 (b) the horizontal was 300 Kmh⁻¹. How long was it in air? 5 Explain work done in gravitational field. Also define conservative field. A stationary wave is established in a string which is 120cm long and fixed at both ends. 7.(a) The string vibrates in four segments, at a frequency of 120 Hz. Determine its wavelength 3 and the fundamental frequency. 8.(a) Define simple harmonic motion. Prove that the projection of a particle moving along a circular path performs simple harmonic motion. (b) What is the least speed at which an aeroplane can execute a vertical loop of 1km radius so 3 that there will be no tendency for the pilot to fall down at the highest point? Discuss the Young's double slit experiment and determine the position where the dark 5 9.(a) and bright fringes will be observed. (b) A glass light pipe in air will totally internally reflect a light ray if its angle of incidence is at least 39". What is the minimum angle for total internal reflection if pipe is in water? 3 (Refractive index of water # 1.33) 17-2019(A)-31000 (MULTAN)

			10120	. 0 (4)		Roll No	0			
Paper Cod			20	19 (A) E PART-I	(11th CLA	SS)	utn-	11-62	-19	
Paper Cou	247	INTE	RMEDIA	FLAKI	(
Number:			110.11 (NE	W SCHEM	(E)	N/L	AXIMUM	MARK	S: 17	
PHYSIC	S PAP	ER-1 GRO 2: 20 Minutes ur choices for that bubble in	Of all Gra	OBJEC	CIVE					
TIME A	LLOWER	2: 20 Minutes ur choices for that bubble in yo or more bul	each objecti	ve type quest	ion as A, B,	marker	or pen to fill	the bubl	oles.	
Note: Y	ou have fo	ur choices for	front of the	it question nu	ark in that	question	. Attempt as	many e award	ed in	
think is c	orrect, int	ur choices for that bubble in vo or more bul in objective tyj	obles will re	paper and lea	ve others bl	ank. No	TIVE PAPE	R.	\$	6
question	s as given	that bubble in yo or more bul in objective type e not filled. D	o not solve t	juestions on t	his sneet of		0.70			
rase no	BBLES ar	e Mor time	s - i - some	ter to measure	the diamete	r of a wit	re in nim are			
Q.No.1 (1)	There are	four readings	of a microffic	or deviations i	s:		1.00			
()	1.21, 1.2	four readings of 1.25 , 1.25 , 1.23 . mm rect answer of 5×10^3	The mean	(C) 0.10 mm		(D) 0.20 nm	1		
	(A) 0.02	mm	(B) 0.01	mm 2 _{2:3} 64 × 10 ⁴	1					1
		mot answer of	5.348 × 10	336	- 18:	1	(D) 1.5 × 10	\mathbf{y}_3		•
(2)	The corr	ect and	/R) 1.45	336 61×10^3	(C) $1.457 \times$	103	(1) 1			
	(A) 1.40	6×10^3	(15)	•			(D) B			
(3)	B. B	s equal to:	(B) I		(C) Zero	**************************************	an anale h	etween t	nem is:	
	(A) B	2	1- 10N cac	n. Their result	ant is equal	to 20N.	(D) 0°			~
(4)	Two fo	s equal to: prices of magnit	(B) 30	u	(C) 90°		(12)			
	(A) 1	80° locity of a body	, abandes Wi	th constant rat	e. Then acc	eleration	(D) Posit		52	
(5)) The ve	locity of a body	(B) C	onstant	(C) Negat	ive	(1)) Fusik	.,,		
	(A) Z	ero	in of pr	wer to work a	re:	2.21	(D) { ML	0T-1		
(6	5) The	ero limensions of th	ne ratio of po	M^0LT^{-1}	(C) $[M^0]$	$I_0 T^{-1}$	(D) (M			
	(A)	$[ML^2T^{-2}]$					(D) 115	6°		
(7) 2.0 t	adian is equal t	o: (B)	57.6°	(C) [M ⁰	6"	(D) 113	.0		
	(A)	57.3" ficial gravity li	55 60 50	a if engl	e ship lotate		2,000	g		
13	(8) Arti	ificial gravity li	ke earth is of	1 52.P	(C) $\frac{1}{-}$	\sqrt{gR}	(D) $\frac{1}{2\pi}$	$r\sqrt{R}$		
	(4)	IOR	(B)	27 1281	4π					
	- -	2π e relation v_2	$\sqrt{2g(h_1-h_2)}$	is called:	(C) Sto	ske's law	(D) Eq	quation o	f continuity	
	(9) Th	e relation $v_2 =$) Torricelli's th	corem (B)) Ventusi relat	10n (C) 510	J				
		iscosity of air a	30°C' is:					.510 Nsn	1-2	
	8		(P	3) 0.019 Nsm		00 Nsm=		,.5		
	(/	1) 6.29 Nsm ⁻¹	,	thenting syste	m at mean p	osition is	s:	[<u>}</u>		
	(11) T	he velocity of s	pring-mass	k	(C) 3	$x_0 \sqrt{\frac{k}{m}}$	(D)	$w\sqrt{\frac{c}{m}}$		
		A) Zero	(B) $\sqrt{\frac{k}{m}}$	(0)	' √ m	ath f and it	vibrate in	one loop,	
	,	A) Zero If a stationary w	ave is establ	ished along a	stretched str	ing of ici	(C) -	(D)	2ℓ	
	(12)	the wave length	is coual to:	(A) ℓ	(B) $\frac{\ell}{2}$		(C) 3			
	(13)	The value of	Y' for poly	atomic gas is: (B) 1.29	(C)	1.67	(D)) 1.19	A lev	
	(15)	The value of (A) 1.40 The property of	0.750	(b) 1.27	their concer	ntration in	n solutions ca	n be four	IQ 15.	
	(14)	The property	of the substan	nces by willen	nce (C) Diffract	tion (D) Reflect	ion	
	**************************************	(A) Optical re	otation	(B) Interiore						
1	(15)	The ratio $\frac{c}{v}$ i	s equal to:			n Dafran	tive index (I	O) Angle	of refraction	
400	(**)	(A) Critical a	ngle		flection (C	olunt lass	of thermodyn	amics		
J. J.	(12)	Human meta	bolism is the	example of:				D) Adiab	atic process	
(16)					law of thermodyna					
Ĭ.	(17)	In which pro	cess entropy	(C) Second of the system	Temana co	versible		(D) Adia		
	X7	(A) isothern		(B) Isocho	ric (C) Irrev	W/NE 11/	众)-2019(A)-	20000 (MULTAN)	
1		3			1	8(CD)C	₽4 -201 /(1-)			

Roll No:

INTERMEDIATE PART-I (11th CLASS)

PHYSICS PAPER-I GROUP-II (NEW SCHEME)

TIME ALLOWED: 2.40 Hours

SUBJECTIVE

MAXIMUM MARKS: 68

NOTE: - Write same question number and its part number on answer book, as given in the question paper.

SECTION-I

Attempt any eight parts.

 $8 \times 2 = 16$

- 2.
 - What is Radian? Explain with diagram. (i)
 - Calculate the 1 light year in metres. (ii)
 - How does the direction of a vector specified in three dimensions? Explain with diagram. (iii)
 - Show that: $\hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{i} = 0$ (iv)
 - Is it possible to add a vector quantity to a scalar quantity? Explain. (v)
 - Write two differences between conservative and non-conservative forces.
 - Calculate the work done in kilo joules in lifting a mass of 10kg (at steady velocity) through (vi) (vii) a vertical height of 10m.
 - What is Stoke's Law? Explain briefly. (viii)
 - State Torricelli's theorem? Write mathematical form. (ix)
 - What is Hook's law? Define spring constant. (x)
 - On what factors does the velocity of mass-spring system depends?
 - If a mass-spring is hung vertically and set into oscillations, why does the motion eventually stop? (xi) (xii)

Attempt any eight parts. 3.

 $8 \times 2 = 16$

- Discuss the case in velocity time graph, when the car moves with constant acceleration. (i)
- What is the difference between uniform velocity and uniform acceleration? (ii)
- Write down the impact on the bodies when a lighter body collides with a massive body at Rest. (iii) Explain by the Mathematical relation.
- Discuss the case in velocity time graph, when the acceleration is increasing. (iv)
- What is meant by moment of inertia? Explain its significance. (v)
- Convert two Radian in degree. (vi)
- A disc and a hoop start moving down from the top of an inclined plane at the same time. Which one will be moving faster on reaching the bottom? Explain. (vii)
- Define Angular Momentum and Law of Conservation of Angular Momentum. (viii)
- Describe the relation between pressure and density. (ix)
- What is the difference between open and closed organ pipe? (x)
- What are the conditions for a path difference in constructive and destructive interference? (xi)
- Why did Newton fail to calculate the velocity of sound accurately? (xii)

Attempt any six parts.

4.

 $6 \times 2 = 12$

- How would you manage to get more orders of spectra using a diffraction grating? (i)
- Write the equations of conditions for constructive and destructive interference. (ii)
- Why the Polaroid sunglasses are better than ordinary sunglasses? (iii)
- One can buy a cheap microscope for use of children. The images seen in such a (iv) microscope have coloured edges. Why is this so?
- A magnifying glass gives a five times enlarged image at a distance of 25cm from the lens. (v) Find, by ray diagram, the focal length of the lens.

P.T.O

MTN-11-G2-19 (2)

18-2019(A)-20000 (MULTAN)

3

5

Explain that the average velocity of the molecules in a gas is zero but the average of the square of velocities is not zero

Give an example of a process in which no heat is transferred to or from the system but (vii) the temperature of the system changes.

Can the mechanical energy be converted into heat energy? If so give an example (viii)

Write the names of four processes involved in a cyclic process of petrol engine. (ix)

SECTION-II

NOTE: - Attempt any three questions. Describe the relation for pressure of a gas enclosed in a vessel by applying kinetic theory of gases. 5.(a) How many metres are in on light year? If speed of light is $3 \times 10^8 \, ms^{-1}$. (b) Discuss elastic collision in one dimension and prove that speed of approach is equal to 6.(a)the speed of separation. (b) The magnitude of dot and cross products of two vectors are $6\sqrt{3}$ and 6 respectively. Find the angle between the vectors. 3 -Prove that for a body of mass 'm' at a height 'h' above the surface of Earth when 7.(a)released and falls its: Loss in P.E = Gain in K.E. 5 The wavelength of the signals from a radio transmitter is 1500m and the frequency is 200 kHz. (b) What is the wavelength for a transmitter operating at 1000 kHz and with what speed the radio waves travel? 3 What do you mean by geostationary orbits? Find the expression for the orbital radius of 8.(a) geostationary satellite. 5 (b) A block of mass 4kg is dropped from a height of 0.8m on to a spring of spring constant $K = 1980 \, Nm^{-1}$. Find the maximum distance through which spring will be compressed. 3 Describe the Michelson's experiment to calculate the speed of light? 9.(a) 5 (b) A light is incident normally on a grating which has 2500 lines per centimetre. Compute the wavelength of a spectral line for which the deviation in second order is 15.0° . 3