Time A	llowed:- 20 minutes	PAPER CODE	D. C A.D. The choice :	which you think is correct: fill
Note:- \	You have four choices for each	ch objective type question as A	A, B, C and D. The choice of	which you think is correct; fill
that circ!	e in front of that question nu	Imber. Use marker or pen to	is printed on this question r	illing two or more circles will paper, on the both sides of the
result in	zero mark in that question.	ingly otherwise the student w	ill be responsible for the sin	uation. Use of Ink Remover or
Answer 3	Sheet and fin bubbles accord	mgry, other wise the student w	oc .espainion en in-	Q. 1
white cor	rrecting fluid is not allowed.	ritten in scientific notation	n as	
			(C) 1247(o)	(D) 1.347×10^4
	(A) 1.347×10^2		(C) 1.347×10^{1}	(D) 1.347×10
2)	The quantity 0.00467 ha			(7)
	(A) 3	(B) 4	(C) 5	(D) 6
3)	If the two components of	a vector are equal in magn	itude, the vector making	angle with x-axis will be
	(A) 30°	(B) 45°	(C) 60°	(D) 90°
4)	Two forces of magnitud	es 10 N and 20 N act on a	body in directions mak	ing angle of 30°, The
4)	X-component of the res	ultant force will be	7.	
		(B) 30.98 N	(C)-20,98 N	(D) 17.98 N
	(A) 25.98 N	(B) 30.96 IV	(C)(20)00 II	ction of projectile will be
5)	If maximum height of the	projectile is equal to the r	ange their angle or project	(D) 76°
	(A) 30°		(C) 45°	SANTANIA INTERNATIONAL CONTRACTOR OF THE SANTANIA CONTRACTOR OF THE SANTANI
6)	If 50 kg crate is pushed	through 2 m across the flo	oor with a force of 50 N	, the work done will be
	(A) 245 I	(B) 150 J	(C) 200 J	(D) 100 J
7)	A body rotates with a co	onstant angular velocity of	f 100 rad/sec about a ve:	rtical axis the required
3. 3.3	torque to sustain this m	otion will be		
	(A) Zero Nm	(B) 100 Nm	(C) 200 Nm	(D) 300 Nm
0\	Moment of inertia of 10	0 kg sphere having radius		
			(C) 500 Kam²	(D) 2.5 Kg m^2
	$(A) 10 Kg m^2$	(B) 5 Kg m^2	(C) $500 \text{ Kg } m^2$	(D) 2.3 Kg m
9)	Laminar flow occurs at		20 100	
	(A) High speed	(B) Low speed	(C) Zero speed	(D) Very high speed
10)	High concentration of re	ed blood cells increases th	e viscosity of blood from	m
,	(A) $2-3$ times that of	(B) 3 – 5 times that of	(C) 5 - 7 times that of	(D) $7-9$ times that of
	water	water	water	water
11)	Distance covered by a b	ody in one vibration is 20	cm. The amplitude of t	the vibration will be
11)	(A) 10 cm	(B) 5 cm	(C) 15 cm ,	(D) 20 cm
13\				V 30070 70,0000 -00000000
12)		ogen is higher than in Ox	(C) 8	(D) 16
10000		3) 6	(C) 0	(6) 10
13)	Sound waves can not pa		(C) 4!	(D) Vacuum
	(A) Liquid	(B) Solids	(C) Air	(D) Vacuum
14)		can not produce colours with	white light?	(D) D:i
	(A) Diffraction	(B) Interference	(C) Polarization	(D) Dispersion
15)	The image formed by e	yepiece of compound mic	roscope is	NEDS 1001400
	(A) Real and magnified	(B) Real and	(C) Virtual and enlarge	
	(500 500)	diminished		diminished
163	The direction of flow of	f heat between two bodies	in thermal contact is de	etermined by
10)	(A) Internal energies	(B) Kinetic energies	(C) Potential energies	(D) Atmospheric pressure
	(A) Internal energies	(B) Kinetic chergies	to an anatom is 27 °C.	The temperature of source is
17)	A carnot engine has an ef		ik temperature is 27 C.	The temperature of source is
	(A) 300°C	(B) 327 °C	(C) 373°C	(D) 273 "C
	gre mant 9000/00th (USAS)	1187- 1119	23000 (1)	

(Group I)

PAPER CODE 2471

Physics (Objective)

Time Allowed: - 20 minutes

Paper (1)

Maximum Marks:- 17

SGD-P1-11-19

Physic	cs (Subjective) Group (I) (Session 2015-17 to 2018-20) (Inter Part - I) Paper (I)			
	Allowed: 2.40 hours SectionI Maximum Marks: 68			
2.	Answer briefly any Eight parts from the followings: $8 \times 2 = 16$			
(i)	Write any two points which should be kept in mind, while using units.			
(ii)	How many micro seconds in one year? (iii) Find the angle between $\bar{A} = 2\hat{i} - 2\hat{j}$ and $\bar{B} = 2\hat{i} + 2\hat{j}$			
(iv)	Can the magnitude of a vector ever be zero? Explain.			
(v)	What are the steps, taken to add vectors by rectangular components?			
(vi)	In which case more work is done, when a 50 kg crate is pushed through 10 m across a floor with a			
	force of 30 N or same crate is lifted through 5 m height?			
(vii)	Derive work-energy principle. (viii) Explain, how the swing is produced in a fast moving tennis ball?			
(ix)	What you know about viscosity and what is its effect on drag force?			
(x)	What are the factors on which frequency of a spring-mass system depends?			
(xi)	What is the difference between free and driven harmonic oscillators? (xii) Explain phase and initial phase. A proper briefly any Fight parts from the followings: $8 \times 2 = 16$			
3.	Answer briefly any Eight parts from the followings:- $8 \times 2 = 16$ Can the velocity of an object reverse direction when acceleration is constant? If so give an example.			
(i)	Define impulse and show how it is related to linear momentum?			
(ii)	What does the slope of velocity-time graph represent?			
(iii) (iv)	An object is thrown vertically upward. Discuss the sign of acceleration due to gravity, relative to			
(17)	velocity, while the object is in air.			
(v)	Define angular velocity. How its direction is determined? (vi) Prove that 1 radian = 57.3°			
(vii)	When mud flies off the tyre of a moving bicycle. In what direction does it fly? Explain.			
(viii)	Show that angular momentum, $L_o = mvr$ (ix) What is difference between interference and beats			
V0555395	What is the difference between constructive and distructive interference?			
(x) (xi)	Explain why sound travels faster in warm air than in cold air?			
(xii)	How should a sound source move with respect to an observer so that the frequency of its sound does not change?			
4.	Answer briefly any Six parts from the followings:- $6 \times 2 = 12$			
(i)	Can visible light produce interference fringes? Explain.			
(ii)	Why the Polaroid sunglasses are better than ordinary sunglasses?			
(iii)	How coherent light beams can be produced? Explain. (iv) How the light signal is transmitted through the optical fibre?			
(v)	How can the resolving power of compound microscope be increased?			
(vi)	Specific heat of a gas at constant pressure is greater than specific heat at constant volume. Why?			
(vii)	Is it possible to convert internal energy into mechanical energy? Explain with example.			
(viii)	What would be average speed of oxygen molecule in the air at.S.T.P.?			
(ix)	Differentiate between isothermal and adiabatic process. Attempt any three questions. Section II (8 × 3 = 24)			
5.	(a) What is Carnot engine? Discuss carnot cycle, also derive expression of its efficiency.			
(b) S	Suppose, we are told that the acceleration of a particle moving in a circle of radius r with uniform speed is			
propor	tional to some power of r , say r'' and some power of v , say v''' , determine the powers of r and v ?			
6.	(a) What is isolated system? Also state and explain the law of conservation of linear momentum.			
0.	(b) Two particles are located at $\vec{r_1} = 3\hat{i} + 7\hat{j}$ and $\vec{r_2} = -2\hat{i} + 3\hat{j}$ respectively. Find both the			
	magnitude of vector $(\vec{r}_2 - \vec{r}_1)$ and its orientation with respect to x-axis.			
7				
7.	(a) Define Doppler effect. Discuss the case when source moves towards the stationary observer and when observer moves towards the stationary source.			
	(b) A brick of mass 2 kg is dropped from a rest position 5 m above the ground. What is its			
	velocity at height of 3 m above the ground.			
8.	(a) What is meant by gravity free system. How gravity like earth is produced in a space ship? Explain.			
(b)	A simple pendulum is 80 cm long what will be its period and frequency at a place where $g = 9.8 ms^{-2}$			
9.	(a) What is magnifying glass? How is it used as a microscope? Derive the relation for its magnifying power?			
VI.	(b) In a double slit experiment, the second order maximum occurs at $\theta = 0.25^{\circ}$, The wavelength			
	is 700 nm. Determine its slit separation?			
	1188 1119 23000			

SGD-11-G1-19

(Inter Part - I)	(Session 2015-17 t		of Student			
Physics (Objective)	(Group	,	Paper (I)			
Time Allowed: - 20 minutes						
Note:- You have four choices for	or each objective type question	as A B Cand D The shall	Maximum Marks:- 17			
Note:- You have four choices for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question. Write PAPER CORE.						
result in zero mark in that question. Write PAPER CODE, which is printed on this question paper, on the both sides of the Answer Sheet and fill bubbles accordingly, otherwise the student will be responsible for the situation. Use of Ink Remover or						
white correcting fluid is not allow	cordingly, otherwise the studer	it will be responsible for the si	tuation. Use of Ink Remover or			
	in a measuring instrumen	it is equal to	Q. 1			
(A) Least count	(B) Accuracy	(C) Fractional	(D) Percentage			
0. 5.		uncertainty	unvertainity			
2) Dimension of momen		,	1000			
(A) [M]	(B) [T]	(C) [LT]	(D) 1			
3) The force of 15 N ma	akes an angle of 90° with	x-axis, its y- component is	S			
(A) 15 N 4) The position waster :	(B) Zero N	(C) 30 N	(D) 45 N			
4) The position vector \hat{i} (A) $y\hat{i} + z\hat{k}$		(0)				
	(B) $x\hat{i} + y\hat{k}$	(C) $x\hat{i} + z\hat{k}$	(D) $x\hat{i} + y\hat{j} + z\hat{k}$			
(A) Time	ocity time graph is equal t					
	(B) Velocity	(C) Distance	(D) Mass			
(A) Minimum	is parallel to the direction (B) Maximum	of motion of the body, th				
	g in free falling lift has we	(C) Infinity	(D) Varies			
(A) 10 N	(B) 9.8 N	(C) Zero N	(D) 000 N			
8) 20 N centripetal Force	e revolving a body along a	circular nath of radious 1	(D) 980 N			
centripetal Force is	,g.	- one and path of fadious	in, the work done by the			
(A) 20 Joule	(B) 40 Joule	(C) 10 Joule	(D) Zero Joule			
9) Stoke's Law hold for			(-) 2010 00010			
(A) Spherical shape	(B) Curved shape	(C) Rectangular shape	(D) Oblong shape			
10) One Torr is equal to	N .	18	2			
(A) 120 Pascals	(B) 100 Pascals	(C) 133.3 Pascals	(D) 80 Pascals			
11) A simple pendulum is	completing 20 vibration i	in 5 seconds, its frequency	is,			
(A) 4 ΠZ	(B) 20 Hz	(C) 200 Hz	(D) 40 Hz			
12) The Product of freque (A) 2	(D) 3	(7) 1	\$1204 <u>.</u>			
	requencies 261 Hz and 258	(C) 1	(D) 1 Hertz			
beats per second are	requencies 201 112 and 236	o riz are sounded togather	, the number of			
(A) 3	(B) 2	(C) 261	(D) 258			
14) Which of the followin	g waves can not be polariz	zed	(D) 236			
(A) X-Rays	(B) Light waves	(C) Sound waves	(D) Infrared rays			
15) If a convex Lens of for	cal length "f" is cut into	two identical halves along	the Lens diameter, the			
rocal tengui of each f	nalf is					
(A) $\frac{3}{2}f$	(B) $2f$	(C) $\frac{f}{2}$	(D) f			
L						
16) Solid ice, Liquid water (A) 273 K	(D) 272 16 v	st in thermal equilbrium at				
(05) 150	(B) 273.16 K	(C) 273°C	(D) 100 °C			
17) The Sum of all the ene	rgies of molecules is know	vn as				
(A) Elastic potential energy	(B) Kinetic energy	(C) Internal energy	(D) Gravitational potential energy			
	1189- 1119	14000 (1)	•			
·		` '				
85.	50 -					
	Jan a	11	(S)			
	SGID-P	11-671 19				
		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
* *	SAMO L COLORDO					

(ii) (iii)	Name several repetitive phenomena occurring in nature which could serve as reasonable time standard? Under what circumstances would a vector have components that are equal in magnitude?						
(iv)		Define component of a vector? What are rectangular components?					
(v)		If all the components of a vector \vec{A}_1 and \vec{A}_2 were reversed, how would this alter $\vec{A}_1 \times \vec{A}_2$?					
(vi)		ne conservative field. Give example. (vii) What is Venturi Relation? Explain briefly.					
(viii)	What is drag force? On what factors does it depend?						
(ix)	Show that 1KWh = 3.6 M J (x) Derive the relation $\omega = \sqrt{\frac{k}{m}}$ (xi) What is resonance? Example must be given?						
(xii)	Doe	s the acceleration of a simple harmonic oscillator ever remain constant? Explain.					
3.		wer briefly any Eight parts from the followings:- $8 \times 2 = 16$					
(i)	Can the velocity of an object reverse direction when acceleration is constant? If so, give an example.						
(ii)	Define impulse and show that how it is related to linear momentum?						
(iii)	Show that the range of projectile is maximum when projectile is thrown at an angle of 45" with horizontal.						
(iv)	Differentiate between Ballistic and non-ballistic projectiles.						
(v)	What is meant by moment of inertia? Explain its significance.						
(vi)		en mud flies off the tyre of a moving bicycle, in what direction does it fly? Explain.					
(vii)	Explain how many minimum number of geo-stationary satellites are required for global coverage of T.V. transmission?						
(viii)		the terms (a) Gravitation, and (b) Geodesics					
(ix)		at features do longitudinal waves have in common with transverse waves? I result of a distant explosion, an observer senses a ground tremor and then hears the explosion.					
(x)		lain the time difference.					
(xi)		does sound travel faster in solids than in gases? (xii) Differentiate between "Red Shift" and "Blue Shift"					
4.	Ans	wer briefly any Six parts from the followings:- $6 \times 2 = 12$					
(i)		at is meant by a wavefront? (ii) Can visible light produce interference fringes? Explain.					
(iii)		centre of Newton's rings is dark. Why? (iv) What are the two conditions for total internal reflection to take place?					
(v)		the light signal is transmitted through optical fibre?					
(vi)		cific heat of a gas at constant pressure is greater than specific heat at constant volume. Why?					
(vii)		possible to construct a heat engine that will not expel heat into the atmosphere?					
(viii)		lain why adiabatic is steeper than an isotherm?					
(ix)		the mechanical energy be converted completely into heat energy? If so give an example.					
Note:		mpt any three questions. Section II $(8 \times 3 = 24)$					
5.	(a)	What is the main difference between petrol engine and diesel engine? Also describe petrol					
	(b)	engine elaborating its four strokes. The diameter and length of a metal culinder measured with the help of vernior celliners of least count.					
	(b)	The diameter and length of a metal cylinder measured with the help of vernier callipers of least count 0.01 cm are 1.22 cm and 5.35 cm. Calculate the volume of cylinder and uncertainty in it.					
6.	(a)	Derive expressions for the magnitude and direction of resultant of two vectors, added by					
v.	(a)	rectangular component method.					
	(b)	A football is thrown upward with an angle of 30° with respect to horizontal.					
	(~)	To throw a 40 m pass what must be the initial speed of the ball?					
7.	(a)	Define the conservative field. Prove that the work done in the earth's gravitational field is					
		independent of the path followed.					
	(b)	A stationary wave is established in a string which is 120 cm long and fixed at both ends. The string vibrate					
	<i>(</i>)	in four segments, at a frequency of 120 Hz. Determine its wavelength and fundamental frequency?					
8.	(a)	Derive an expression for the radius of orbit of a geo-stationary satellite.					
	(b)	A block of mass 4 kg is dropped from a height of 0.8 m on to a spring of spring constant $K = 1960 \frac{N}{M}$. Find the maximum distance through which spring will be compressed.					
		m					
9.	(a)	Explain compound microscope using suitable diagram. Derive formula for its angular magnification.					
	(b)	Sodium light $(\lambda = 589 \text{ nm})$ is incident normally on a grating having 3000 lines per centimetre. What is the highest order of the spectrum obtained with this grating?					
		5CD-11-G2-19					

1119 Warning:- Please, do not write anything on this question paper except your Roll No.

Section ----- I

(Session 2015-17 to 2018-20)

(Inter Part - I) Maximum Marks: 68

 $8 \times 2 = 16$

Group (II)

Answer briefly any Eight parts from the followings:-

Write two differences between base and derived quantities?

Physics (Subjective)

(i)

Time Allowed: 2.40 hours