Pap	ojective per Code 3197 [.] You have f
S.#	
1	Two non-para
2	Equation of a P(c,d) and pa
3	Normal form

---- چېر کړ ښکان که کت سالير - پېچو -----

Intermediate Part Second

MATHEMATICS (Objective) Group – I Time: 30 Minutes Marks: 20

FSD-1-24

four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill the ircle in front of that question number on computerized answer sheet. Use marker or pen to fill the circles. filling two or more circles will result in zero marks in that question. Attempt as many questions as given in ype question paper and leave other circles blank.

S.#_	Questions		A		В		С	D
1	Two non-parallel lines intersect each other at:	1	point	0	poin	t	∞ point	2 points
2	Equation of a straight line passing through P(c,d) and parallel to x-axis is:	2	x = 0		y = 0		x = d	y = d
3	Normal form of equation of straight line is:	A	y = mx	+ c	В	x sin(90°-α)+yco	$s(90^{\circ} - \alpha) = p$
		C	$\frac{x}{a} + \frac{y}{b}$	=1	D		$x = \frac{y}{2}$	5 2
4	ax + b > 0 is:	An	identity	A line	ar eq	uation	Equation	Inequality
5	For hyperbola $b^2 = ?$	c ²	$^{2}-a^{2}$	a	$c^2 - c^2$	2	$c^2 + a^2$	ac - 1
6	Parametric equations of a circle are:		a cosθ, = bsinθ		a sin	100	$x = a \cos \theta$, $y = a \sin \theta$	$x = b\cos\theta$, $y = a\sin\theta$
7	The equation $ax^2 + by^2 + 2gx + 2fy + c = 0$ will represent circle if:	8	a < b		a = b		a > b	a≠b
8	If terminal point B of vector AB coincides with its initial point A, then such a vector is called	Na	Vector	Un	it vec	tor	Coincident vector	Free vector
9	If α, β, γ are direction angles of a vector, then	0 <	$\alpha < \frac{\pi}{2}$	0 ≤	≨α≤	$\frac{\pi}{2}$	$0 < \alpha < \pi$	$0 \le \alpha \le \pi$
10	If $\vec{u} = a\hat{i} + b\hat{j} + c\hat{k}$, then projection of \vec{u} along \hat{k} is equal to:		a		b		С	ū∙k̂
11	The equations of the form $x = a \cos \theta$, $y = a \sin \theta$ are called:		nplicit uations	l	xplic uatio		Parametric equations	Homogeneous equations
12	Domain of $f(x) = 2 + \sqrt{x - 1} \forall x \in \mathbb{R}$ is:	[-	-1,+∞)	[0,+∞)	[1,+∞)	[2,+∞)
13	If $f(x) = c^3$, where c is any constant, then $f'(x) = ?$		3c ²		c ²		3 c	0
14	If $y = x^4 + 2x^2 + 3$, then $\frac{dy}{dx} = ?$	4x	$\sqrt{y-1}$	4x	√y -	2	$4x\sqrt{y-3}$	$4x\sqrt{y-4}$
15	At a point of maximum value of a function, its derivative is:	2	Zero	P	ositiv	e e	Negative	Infinite
16	If $y = \sin 3x$, then $y_2 = ?$	30	cos3x	-9	9sin 3	x	-27 cos 3x	81sin3x
17	$\int_{0}^{\sqrt{3}} \frac{1}{1+x^2} dx = ?$		$\frac{\pi}{6}$		$\frac{\pi}{4}$		$\frac{\pi}{3}$	$\frac{\pi}{2}$
18	$\int \frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx = ? \text{ is :}$		x + c	si	nx+	С	$\cos x + c$	$\cos^2 x + c$
19	$\int \tan^2 x dx = ?$	tan	x + x + c	2 tan	x sec ²	x + c	sec x - x + c	tan x - x + c
20	$\int \ell \mathbf{n} \mathbf{x} \mathbf{dx} = ?$	xℓ	?nx + c	xℓn	x – x	+ c	$x \ell nx + x + c$	$\ell nx + x + c$

Intermediate Part Second

Roll No.

MATHEMATICS (Subjective)

Group – I

Time: 02:30 Hours

Marks: 80

SECTION - I

2. Attempt any EIGHT parts:

16

- Show that parametric equations $x = a \cos \theta$, $y = b \sin \theta$ represent the equation of Ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (i)
- If $f(x) = \sqrt{x+1}$, $g(x) = \frac{1}{x^2}$, find $(f \circ g)(x)$
- Evaluate the limit: $\lim_{x \to 0} \frac{\sin ax}{\sin bx}$
- Discuss the continuity of $f(x) = \begin{cases} 2x+5, & x \le 2 \\ 4x+1, & x > 2 \end{cases}$ at x = 2
- Use definition to find the derivative of x(x-3) w.r.t. 'x'
- Differentiate $x^4 + 2x^3 + x^2$ w.r.t. 'x'
- (vii) Differentiate $(1 + x^2)^n$ w.r.t. x^2
- (viii) Find $\frac{dy}{dx}$ when $x = y \sin y$
- (ix) If $y = e^{-2x} \sin 2x$, find $\frac{dy}{dx}$
- Find $\frac{dy}{dx}$ when $y = \sinh^{-1}(x^3)$
- 360.com Use Maclaurin Series to prove that $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!}$
- (xii) Find the interval where $f(x) = 4 x^2$, $x \in (-2, 2)$ is increasing or decreasing in the given domain.

3. Attempt any EIGHT parts:

16

- Use differentials, find $\frac{dy}{dx}$ and $\frac{dx}{dy}$ of $x^2 + 2y^2 = 16$
- Evaluate $\int \sin^2 x \, dx$ (ii)
- Find $\int \frac{dx}{x(\ell n 2x)^2}$ (iii)
- Evaluate ∫sin⁻¹ x dx
- Evaluate $\int \ell nx \, dx$ (v)
- Find area above the x-axis, bounded by curve $y^2 = 3 x$ from x = -1 to x = 2
- (vii) Solve differential equation $1 + \cos x \tan y \frac{dy}{dx} = 0$
- (viii) Find point three-fifth of way along the line segment from A(-5, 8) to B(5, 3)
- Two points P and O' are given in xy-coordinate system. Find XY-coordinates of P. $P\left(\frac{3}{2},\frac{5}{2}\right); O'\left(-\frac{1}{2},\frac{7}{2}\right)$
- Find an equation of line through (-4,-6) and perpendicular to the line having slope $-\frac{3}{2}$ (x)
- Express the system 3x + 4y 7 = 0, 2x 5y + 8 = 0, x + y 3 = 0 in matrix form and check whether three lines are concurrent.
- (xii) Find lines represented by $x^2 2xy \sec \alpha + y^2 = 0$

(Continued P/2)

-2- FSD-1-24

4.	Atte	mpt any NINE parts:	18
	(i)	Graph the solution set of linear inequality $5x - 4y \le 20$ in xy-plane.	10
	(ii)	Define corner point of solution region.	
	(iii)	Find center and radius of the circle $5x^2 + 5y^2 + 14x + 12y - 10 = 0$	
	(iv)	Find equation of parabola whose focus is $F(-3, 4)$ and directrix is $3x - 4y + 5 = 0$	
	(v)	Find length of the tangent drawn from the point $(-5, 4)$ to the circle $5x^2 + 5y^2 - 10x + 15y - 131 = 0$	
	(vi)	Find focus and vertices of Ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$	
	(vii)	Find equation of tangent to conic $y^2 = 4ax$ at $(at^2, 2at)$	
	(viii)	Find equation of hyperbola with center (0, 0), focus (6, 0) vertex (4, 0).	
	(ix) (x)	If O is origin and $\overrightarrow{OP} = \overrightarrow{AB}$, find the point P when A and B are (-3, 7) and (1, 0) respectively. Find direction cosines of vector $\underline{\mathbf{v}} = \underline{\mathbf{i}} - \mathbf{j} - \underline{\mathbf{k}}$	
	(xi)	Find cosine of the angle θ between vectors $\underline{\mathbf{u}} = 3\underline{\mathbf{i}} + \underline{\mathbf{j}} - \underline{\mathbf{k}}$, $\underline{\mathbf{v}} = 2\underline{\mathbf{i}} - \underline{\mathbf{j}} + \underline{\mathbf{k}}$	
	(xii)	A force $\underline{F} = 7\underline{i} + 4\underline{j} - 3\underline{k}$ is applied at P(1, -2, 3), find its moment about Q(2, 1, 1)	
		Find the volume of the parallelepiped determined by $\underline{\mathbf{u}} = \underline{\mathbf{i}} + 2\underline{\mathbf{j}} - \underline{\mathbf{k}}$, $\underline{\mathbf{v}} = \underline{\mathbf{i}} - 2\underline{\mathbf{j}} + 3\underline{\mathbf{k}}$, $\underline{\mathbf{w}} = \underline{\mathbf{i}} - 7\underline{\mathbf{j}} - 4\underline{\mathbf{k}}$	
		SECTION - II Attempt any THREE questions. Each question carries 10 marks.	
			í
5.	(a)If	$f(x) = \begin{cases} \frac{\sqrt{2x+5} - \sqrt{x+7}}{x-2}, & x \neq 2 \\ k, & x = 2 \end{cases}$, find the value of 'k' so that f is continuous at x = 2.	05
	(b)Pr	Frove that $y = \frac{dy}{dx} + x = 0$ if $x = \frac{1 - t^2}{1 + t^2}$, $y = \frac{2t}{1 + t^2}$	05
6.	(a)Sł	now that $y = x^x$ has minimum value at $x = \frac{1}{e}$	05
	(b)E	valuate: $\int \frac{dx}{(1+x^2)^{3/2}}$	05
7.	(a)Fi	nd the area between x-axis and curve $y = \sqrt{2ax - x^2}$, when $a > 0$	05
•	(b)M	Finimize $z = 3x + y$; subject to constraints $3x + 5y \ge 15$; $x + 3y \ge 9$, $x, y \ge 0$	05
	(0)	minute 2 of the first to constraints on to years, and a first to the f	0.5
8.		nd the length of the chord cut off from the line $2x + 3y = 13$ by the circle $x^2 + y^2 = 26$	05
	(b)U	se vector method to show that $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$	05
9.	(a) W	rite an equation of the parabola with given elements:	
		ocus $(-3, 1)$; directrix $x - 2y - 3 = 0$	05
		nd the distance between the given parallel lines. Sketch the lines. Also find an equation of the	
		rallel line lying midway between them:	
	3x	x - 4y + 3 = 0; $3x - 4y + 7 = 0$	05

oll No.	
OII IVO	· ·

Objective Paper Code

Intermediate Part Second MATHEMATICS (Objective) Group-II

8196

Time: 30 Minutes

Marks: 20

You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill the relevant circle in front of that question number on computerized answer sheet. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero marks in that question. Attempt as many questions as given in objective type question paper and leave other circles blank.

1 he suitable substitution for \sqrt{x} at \sqrt{x} and \sqrt	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 The suitable substitution for $\sqrt{x^2-a^2}$ to be integrated: $x = a \sin \theta$ $x = a \sec \theta$ $x = a \tan \theta$ $x = a \cot \theta$ in the integrated: $x = a \cot \theta$ $x = a $	$\frac{(ax+b)^{n+1}}{a(n+1)} + c \qquad \frac{(ax+b)^{n+1}}{b(n+1)} + c \qquad \frac{(ax+b)^{n+1}}{a(n-1)} + c \qquad \frac{a(ax+b)^{n+1}}{n+1} + c$ $-\sqrt{2}\cos x + c \qquad \sqrt{2}\sin x + c \qquad \sqrt{2}\cos x + c \qquad -\sqrt{2}\sin x + c$ $\frac{1}{x}e^{x} + c \qquad e^{x}(\ln x) + c \qquad \frac{e^{x}}{\ln x} + c \qquad \frac{\ln x}{e^{x}} + c$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$-\sqrt{2}\cos x + c \qquad \sqrt{2}\sin x + c \qquad \sqrt{2}\cos x + c \qquad -\sqrt{2}\sin x + c$ $\frac{1}{x}e^{x} + c \qquad e^{x}(\ln x) + c \qquad \frac{e^{x}}{\ln x} + c \qquad \frac{\ln x}{e^{x}} + c$
3 $\int \sqrt{1-\cos 2x} dx = :$ $-\sqrt{2}\cos x + c$ $\sqrt{2}\sin x + c$ $\sqrt{2}\cos x + c$ $-\sqrt{3}\cos x + c$ $-\sqrt{3}\cos x + c$ $\sqrt{2}\cos x + c$ $-\sqrt{3}\cos x + c}$ $-$	$-\sqrt{2}\cos x + c \qquad \sqrt{2}\sin x + c \qquad \sqrt{2}\cos x + c \qquad -\sqrt{2}\sin x + c$ $\frac{1}{x}e^{x} + c \qquad e^{x}(\ln x) + c \qquad \frac{e^{x}}{\ln x} + c \qquad \frac{\ln x}{e^{x}} + c$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	x cnx on-1 dx
5 $\frac{d}{dx}(y^n) = :$	$n-1$ $n-1$ dy nv^{n-1} dx
6 $\frac{d}{dx}(3^{x}) = :$ $3^{x} \ln 3$ 3^{x} $x3^{x-1}$ 7 If $f(x) = \frac{1}{x-1}$, then $f'(2) = :$ -1 1 0 8 $f(x) = -3x^{2}$ has maximum value at: $x = -2$ $x = -1$ $x = 0$ 9 The function $f(x) = (x+2)^{2}$ is: Even Odd Both A and B Ne 10 $\lim_{x \to 0} (1+3x)^{\frac{2}{x}} = :$ e^{2} e^{8} e^{6} 11 $(\underline{i} \times \underline{k}) \times \underline{j} = :$ 0 1 2 12 $ \cos \alpha \underline{i} + \sin \alpha \underline{j} + 0\underline{k} = :$ 0 1 2 13 If $\underline{a} + \underline{b} + \underline{c} = 0$ then: $\underline{a} \times \underline{b} \times \underline{c} = 0$ $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$ $\underline{a} \cdot \underline{b} = \underline{b} \cdot \underline{c} = \underline{c} \cdot \underline{a}$ 14 Focus of the parabola $x^{2} = -16y$ is: $(0, 4)$ $(0, -4)$ $(4, 0)$ 15 A circle is called a point circle if: $r = 1$ $r = 0$ $r = 2$	ny^{n-1} ny^{n+1} ny dy
7 If $f(x) = \frac{1}{x-1}$, then $f'(2) = :$ 8 $f(x) = -3x^2$ has maximum value at: 9 The function $f(x) = (x+2)^2$ is: 10 $\lim_{x \to 0} (1+3x)^{\frac{2}{x}} = :$ 11 $(\underline{i} \times \underline{k}) \times \underline{j} = :$ 12 $ \cos \alpha \underline{i} + \sin \alpha \underline{j} + 0\underline{k} = :$ 13 If $\underline{a} + \underline{b} + \underline{c} = 0$ then: 14 Focus of the parabola $x^2 = -16y$ is: 15 A circle is called a point circle if: 10 $x = -1$ 11 $x = 0$ 12 $x = -1$ 13 $x = 0$ 14 $x = 0$ 15 A circle is called a point circle if: 16 $x = 0$ 17 $x = 0$ 18 $x = -1$ 19 $x = 0$ 10 $x = -1$ 10 $x = 0$ 11 $x = 0$ 12 $x = 0$ 13 $x = 0$ 14 Focus of the parabola $x^2 = -16y$ is: 15 A circle is called a point circle if: 16 $x = 0$ 17 $x = 0$ 18 $x = 0$ 19 $x = 0$ 10 $x = 0$ 10 $x = 0$ 11 $x = 0$ 12 $x = 0$ 13 $x = 0$ 14 Focus of the parabola $x = 0$ 15 A circle is called a point circle if: 16 $x = 0$ 17 $x = 0$ 18 $x = 0$ 19 $x = 0$ 10 $x = 0$	$3^{x} \ell n 3$ 3^{x} $x 3^{x-1}$ 3^{x+1}
8 $f(x) = -3x^2$ has maximum value at: $x = -2$ $x = -1$ $x = 0$ 9 The function $f(x) = (x + 2)^2$ is: Even Odd Both A and B 10 $\lim_{x \to 0} (1 + 3x)^{\frac{2}{x}} = :$ e^2 e^8 e^6 11 $(\underline{i} \times \underline{k}) \times \underline{j} = :$ 0 1 2 12 $ \cos \alpha \underline{i} + \sin \alpha \underline{j} + 0\underline{k} = :$ 0 $\underline{a} \times \underline{b} + \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$ $\underline{a} \cdot \underline{b} = \underline{b} \cdot \underline{c} = \underline{c} \cdot \underline{a}$ 13 If $\underline{a} + \underline{b} + \underline{c} = 0$ then: $\underline{a} \times \underline{b} \times \underline{c} = 0$ $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$ $\underline{a} \cdot \underline{b} = \underline{b} \cdot \underline{c} = \underline{c} \cdot \underline{a}$ 14 Focus of the parabola $x^2 = -16y$ is: $(0, 4)$ $(0, -4)$ $(4, 0)$ 15 A circle is called a point circle if: $r = 1$ $r = 0$ $r = 2$	f'(2) = :
The function $f(x) = (x + 2)^2$ is: Even Odd Both A and B Ne 10 $\lim_{x \to 0} (1+3x)^{\frac{2}{x}} = :$ $\lim_{x \to 0} (1+3x)^{\frac{2}{x}} = :$ 11 $(\underline{i} \times \underline{k}) \times \underline{j} = :$ 12 $ \cos \alpha \underline{i} + \sin \alpha \underline{j} + 0\underline{k} = :$ 13 If $\underline{a} + \underline{b} + \underline{c} = 0$ then: $\underline{a} \times \underline{b} \times \underline{c} = 0$ $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$ $\underline{a} \cdot \underline{b} = \underline{b} \cdot \underline{c} = \underline{c} \cdot \underline{a}$ 14 Focus of the parabola $x^2 = -16y$ is: $(0, 4)$ $(0, -4)$ $(4, 0)$ 15 A circle is called a point circle if: $x = 0$ $x = 2$	imum value at: $x = -2$ $x = -1$ $x = 0$ $x = 1$
10 $\lim_{x \to 0} (1+3x)^{\frac{2}{x}} = :$ 11 $(\underline{i} \times \underline{k}) \times \underline{j} = :$ 12 $ \cos \alpha \underline{i} + \sin \alpha \underline{j} + 0\underline{k} = :$ 13 If $\underline{a} + \underline{b} + \underline{c} = 0$ then: 14 Focus of the parabola $x^2 = -16y$ is: 15 A circle is called a point circle if: 10 $\underline{a} \times \underline{b} \times \underline{c} = 0$ $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$ $\underline{a} \cdot \underline{b} = \underline{b} \cdot \underline{c} = \underline{c} \cdot \underline{a}$ 16 $\underline{a} \times \underline{b} \times \underline{c} = 0$ $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$ $\underline{a} \cdot \underline{b} = \underline{b} \cdot \underline{c} = \underline{c} \cdot \underline{a}$	Roth A and B Neither even
11 $(\underline{i} \times \underline{k}) \times \underline{j} = :$ 12 $ \cos \alpha \underline{i} + \sin \alpha \underline{j} + 0\underline{k} = :$ 13 If $\underline{a} + \underline{b} + \underline{c} = 0$ then: 14 Focus of the parabola $x^2 = -16y$ is: 15 A circle is called a point circle if: 16 $\underline{a} \times \underline{b} \times \underline{c} = 0$ $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$ $\underline{a} \cdot \underline{b} = \underline{b} \cdot \underline{c} = \underline{c} \cdot \underline{a}$ 17 $\underline{a} \times \underline{b} \times \underline{c} = 0$ $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$ $\underline{a} \cdot \underline{b} = \underline{b} \cdot \underline{c} = \underline{c} \cdot \underline{a}$ 18 $\underline{a} \times \underline{b} \times \underline{c} = 0$ $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$ $\underline{a} \cdot \underline{b} = \underline{b} \cdot \underline{c} = \underline{c} \cdot \underline{a}$ 19 $\underline{a} \times \underline{b} \times \underline{c} = 0$ $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$ $\underline{a} \cdot \underline{b} = \underline{b} \cdot \underline{c} = \underline{c} \cdot \underline{a}$ 10 $\underline{a} \times \underline{b} \times \underline{c} = 0$ $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$ 11 $\underline{a} \times \underline{b} \times \underline{c} = 0$ $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$ 12 $\underline{a} \times \underline{b} \times \underline{c} = 0$ $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$ 13 $\underline{a} \times \underline{b} \times \underline{c} = 0$ $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$ 14 $\underline{a} \times \underline{b} \times \underline{c} = 0$ $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$ 15 $\underline{a} \times \underline{b} \times \underline{c} = 0$ $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$ 16 $\underline{a} \times \underline{b} \times \underline{c} = 0$ $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$ 17 $\underline{a} \times \underline{b} \times \underline{c} = 0$ $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$ 18 $\underline{a} \times \underline{b} \times \underline{c} = 0$ $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$ 19 $\underline{a} \times \underline{b} \times \underline{c} = 0$ $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$ 19 $\underline{a} \times \underline{b} \times \underline{c} = 0$ $\underline{a} \times \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$	
12 $ \cos \alpha \underline{i} + \sin \alpha \underline{j} + 0\underline{k} = :$ 13 If $\underline{a} + \underline{b} + \underline{c} = 0$ then: 14 Focus of the parabola $x^2 = -16y$ is: 15 A circle is called a point circle if: 10 $\underline{a} \times \underline{b} \times \underline{c} = 0$ $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$ $\underline{a} \cdot \underline{b} = \underline{b} \cdot \underline{c} = \underline{c} \cdot \underline{a}$ 11 $\underline{a} \times \underline{b} \times \underline{c} = 0$ $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$ $\underline{a} \cdot \underline{b} = \underline{b} \cdot \underline{c} = \underline{c} \cdot \underline{a}$ 12 $\underline{a} \times \underline{b} \times \underline{c} = 0$ $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$ $\underline{a} \cdot \underline{b} = \underline{b} \cdot \underline{c} = \underline{c} \cdot \underline{a}$ 13 $\underline{a} \times \underline{b} \times \underline{c} = 0$ $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$ $\underline{a} \cdot \underline{b} = \underline{b} \cdot \underline{c} = \underline{c} \cdot \underline{a}$ 14 Focus of the parabola $\underline{c} \times \underline{c} = 0$ is: 15 A circle is called a point circle if: 16 $\underline{c} \times \underline{c} = 0$	$-\underline{\mathbf{j}}$ 0 $\underline{\mathbf{i}}$
13 If $\underline{a} + \underline{b} + \underline{c} = 0$ then: 14 Focus of the parabola $x^2 = -16y$ is: (0,4) (0,-4) (4,0) 15 A circle is called a point circle if: $r = 1$ $r = 0$ $r = 2$	$ \mathbf{x} =:$ 0 1 2 -1
14 Focus of the parabola $x^2 = -16y$ is: $(0, 4)$ 15 A circle is called a point circle if: $r = 1$ $r = 0$ $r = 2$	a: $\underline{\mathbf{a}} \times \underline{\mathbf{b}} \times \underline{\mathbf{c}} = 0$ $\underline{\mathbf{a}} \times \underline{\mathbf{b}} = \underline{\mathbf{b}} \times \underline{\mathbf{c}} = \underline{\mathbf{c}} \times \underline{\mathbf{a}}$ $\underline{\mathbf{a}} \cdot \underline{\mathbf{b}} = \underline{\mathbf{b}} \cdot \underline{\mathbf{c}} = \underline{\mathbf{c}} \cdot \underline{\mathbf{a}}$ $\underline{\mathbf{a}} = \underline{\mathbf{b}} = \underline{\mathbf{c}}$
15 A circle is called a point circle if:	$\int_{0}^{1} x^{2} = -16y \text{ is:}$ $(0, 4)$ $(0, -4)$ $(4, 0)$ $(-4, 0)$
. 0.001	point circle if: $r=1$ $r=0$ $r=2$ $r=3$
16 Eccentricity of ellipse is:	$0 < e < 1 \qquad e = 1$
The point $(-1, 2)$ satisfies the inequality: $x-y>4$ $x-y\ge 4$ $x+y<4$	x + y > 4 $x + y > 5$
18 Equation of horizontal line through $y = -9$ $y = 7$ $x = -9$ $(7, -9)$ is:	
19 If m_1 and m_2 are the slopes of two lines then lines are perpendicular if: $m_1m_2 = 0 \qquad m_1m_2 + 1 = 0 \qquad m_1m_2 + 2 = 0$	1111112 = 0
then lines are perpendicular ii. 20 Distance of point (1, -2) from y-axis is: 2 1 3	tellulcular II.

Time: 02:30 Hours Marks: 80

SECTION - I

2. Attempt any EIGHT parts:

16

- then find c so that $\lim_{x \to -1}$ If $f(x) = \begin{cases} x+2, & x \le -1 \\ c+2, & x > -1 \end{cases}$
- Evaluate $\lim_{x \to \infty} \left(\frac{x}{1+x} \right)^x$
- If $g(x) = \frac{3}{x-1}$, $x \ne 1$; then find gog(x)
- Determine whether $f(x) = \frac{3x}{x^2 + 1}$ is even or odd.
- Differentiate $\frac{2x-3}{2x+1}$ w.r.t x
- (vi) Find $\frac{dy}{dx}$ if $x = \theta + \frac{1}{\theta}$ and $y = \theta + 1$
- (vii) Differentiate $\cos \sqrt{x} + \sqrt{\sin x}$ w.r.t x
- (viii) Differentiate √tan x w.r.t x
- (ix) Find f'(x) if $f(x) = ln(e^x + e^{-x})$
- Find y_2 if $x^3 y^3 = a^3$
- (xi) Prove that $\cos x = 1 \frac{x^2}{2} + \frac{x^4}{4} \frac{x^6}{6} + \dots$
- (xii) Determine the interval in which $f(x) = \sin x$ is decreasing; $x \in (-\pi, \pi)$

3. Attempt any EIGHT parts:

- Find dy and δy for the function $y = \sqrt{x}$ when x changes from 4 to 4.41
- Evaluate $\int (3x^2 2x + 1) dx$
- (iii) Evaluate the integral $\int \frac{1-x^2}{1+x^2} dx$
- (iv) Evaluate $\int x^3 \ell nx \, dx$
- (v) Evaluate $\int \frac{2x}{x^2 a^2} dx$
- Solve the definite integral $\int_{0}^{3} (x^3 + 3x^2) dx$
- (vii) Find the area between x-axis and the curve $y = \cos \frac{1}{2}x$ from $x = -\pi$ to $x = \pi$
- (viii) Find 'h' such that points A(-1, h), B(3, 2) and C(7, 3) are collinear.
- (ix) Find the slope and inclination of the line joining the points (4, 6) and (4, 8).
- Find the equation of line through (-4, 7) and parallel to the line 2x 7y + 4 = 0
- (xi) Check whether the lines 4x 3y 8 = 0; 3x 4y 6 = 0 and x y 2 = 0 are concurrent or not.
- (xii) Find the angle between the pair of lines $x^2 + 2xy \sec \alpha + y^2 = 0$

(Continued P/2)

18

05

4. Attempt any NINE parts:

- Indicate solution set of linear inequalities $3x + 7y \ge 21$, $x y \le 2$ (i)
- Define optimal solution. (ii)
- Find center and radius of the circle $x^2 + y^2 6x + 4y + 13 = 0$ (iii)
- Find length of tangent drawn from point (-5, 4) to the circle $5x^2 + 5y^2 10x + 15y 131 = 0$ (iv)
- Find the vertex and directrix of parabola $x^2 = 5y$ (v)
- Find equation of ellipse with data vertices (-1, 1), (5,1) Foci: (4, 1), (0, 1)
- (vii) Find equation of hyperbola with data Foci $(0, \pm 9)$, directrices $y = \pm 4$
- (viii) Find equation of normal to $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ at $(a \sec \theta, b \tan \theta)$
- Find unit vector in the direction of vector $\underline{\mathbf{v}} = -\frac{\sqrt{3}}{2}\underline{\mathbf{i}} \frac{1}{2}\underline{\mathbf{j}}$ (ix)
- Find direction cosines of vector $\underline{\mathbf{v}} = 6\underline{\mathbf{i}} 2\underline{\mathbf{j}} + \underline{\mathbf{k}}$ (x)
- Show that the set of points P(1, 3, 2), Q(4, 1, 4) and R(6, 5, 5) forms a right triangle.
- (xii) Compute cross product $\underline{b} \times \underline{a}$ if $\underline{a} = 3\underline{i} 2\underline{j} + \underline{k}$, $\underline{b} = \underline{i} + \underline{j}$
- (xiii) Prove that vectors $\underline{\mathbf{i}} 2\underline{\mathbf{j}} + 3\underline{\mathbf{k}}$, $-2\underline{\mathbf{i}} + 3\underline{\mathbf{j}} 4\underline{\mathbf{k}}$, $\underline{\mathbf{i}} 3\underline{\mathbf{j}} + 5\underline{\mathbf{k}}$ are coplaner.

SECTION - II Attempt any THREE questions. Each question carries 10 marks.

- 5. (a) If $f(x) = \begin{cases} \frac{\sqrt{2x+5} \sqrt{x+7}}{x-2}, & x \neq 2, \\ k, & x = 2 \end{cases}$, find the value of 'k' for which f is continuous at x = 2. 05
 - (b) Find $\frac{dy}{dx}$, if $y = x \sin^{-1}\left(\frac{x}{a}\right) + \sqrt{a^2 x^2}$ 05
- 6. (a) Show that $y = x^x$ has minimum value at $x = \frac{1}{a}$ 05
 - (b) Evaluate the indefinite integral $\int \sqrt{4-5x^2} dx$ 05
- 7. (a) Evaluate $\int_{\pi}^{\frac{\pi}{2}} \frac{\cos x}{\sin x(2 + \sin x)} dx$
 - (b) Graph the feasible region of linear inequalities and find corner points:

$$2x + 3y \le 18$$
; $2x + y \le 10$; $x + 4y \le 12$

- 05 8. (a) Find an equation of circle passes through A(5, 1) and tangent to line 2x - y - 10 = 0 at B(3, -4) 05
 - (b) Prove that the angle in a semi-circle is a right angle.
- 05 9. (a) Find the focus, vertex and directrix of the parabola; $y^2 = -8(x-3)$
 - (b) Find the lines represented by $9x^2 + 24xy + 16y^2 = 0$ and also find measure of the angle between them. 05

1210-XII124-20000