	*			
Roll No. of Candidate : PHYSICS		(INTERMEDIATE	PART-II) 421 - (IV) P	aper II (Group – I)
	: 20 Minutes	OBJECTIVE	Code: 8477 Guj	61-21 Marks: 17
Note:	You have four choices for	each objective type question at question number. Use ma mark in that question. Atte	n as A, B, C and D. The cho	ice which you think is correct. Cutting or filling two or mor iven in objective type question.
1. 1.	Electrons are (A) hadrons	(B) leptons	(C) quarks	(D) baryons
2.	The amount of energy (A) 9.315 Mev	equivalent to 1 amu is (B) 93.15 Mev	(C) 931.5 Mev	(D) 211.5 Mev
3.	Normally an electron (A) 10^{-8} s	can reside in metastable st (B) 10^{-6} s	ate for about (C) 10^{-4} s	(D) 10^{-3} s
4. 5.	The energy required for (A) 0.51 Mev Compton wavelength	(B) 1.02 Mev	(C) 2.04 Mev	(D) 3.06 Mev
	(A) $\frac{h}{m_o c^2}$	(B) $\frac{hc}{m_o}$	$(C) \frac{h}{m_o c}$	(D) $\frac{hc^2}{m_o}$
6. 7.	(A) 10^{-3} s	n its current ON and OFF i (B) 10 ⁻⁶ s ain of an inverting amplific	er is	(D) 10^{-12} s
: ,/•	(A) $G = \frac{R_1}{R_2}$	(B) $G = \frac{R_2}{R_1}$	$(C) G = \frac{-R_2}{R_1}$	$(D) G = \frac{-R_1}{R_2}$
8. 9.	(A) brittle	ak just after the elastic lim (B) non-magnetic phase angle is given by	it is reached are called (C) magnetic	(D) ductile
	(A) $\theta = \tan^{-1}(\omega RL)$		(B) $\theta = \tan^{-1} \left(\frac{R}{\omega L} \right)$	
	(C) $\theta = \tan^{-1} \left(\frac{\omega L}{R} \right)$		(D) $\theta = \tan^{-1} \left(\frac{1}{\omega R} \right)$	-,
10	with an inductor of 5	ired to construct a resonar mH is (B) 5.09 μF	(C) 5.09 mF	(D) 5.09 KF
11	(A) 5.09 PF A device which conv (A) D.C. generator	erts mechanical energy in	to electrical energy is calle (C) A.C. generator	()
12	The relation for self-	inductance of the solenoid (B) $L = \mu_o NA \ell$	is	(D) $L = \mu_o N^2 A k$
13	The brightness of special (A) filament	ot on the screen of CRO is (B) cathode	controlled by (C) anode	(D) grid
12	1. The relation $\sum_{i=1}^{N} (\vec{B}. \vec{L})$	$(\vec{L})_r = \mu_o I$ is called as		(D) Gauss's law
15	(A) $\pm 20\%$	(B) $\pm 10\%$	(C) Ampere's law of fourth band, then tolerand (C) ±5%	. ,
10	The formula for elec	tric field as potential grad	ient is $-\Delta U$	$-\Delta U$
	(A) $E = \frac{\Delta v}{\Delta r}$	(B) $E = \frac{-\Delta v}{\Delta t}$	(C) $E = \frac{\Delta r}{\Delta r}$	(D) $E = \frac{\Delta t}{\Delta t}$
1'	7. The SI unit of electrical (A) Kg m ² s ⁻¹ c	ric potential is (B) Kg m ² s ⁻² c	(C) $\text{Kg m}^2 \text{s}^{-2} \text{c}^{-1}$	(D) $E = \frac{-\Delta U}{\Delta t}$ (D) $Kg m^{-2} s^2 c^{-1}$

315-(IV)-421-34000

Paper II

(Group -I)

: 2:40 Hours

SUBJECTIVE

Marks: 68

e: Section I is compulsory. Attempt any three (3) questions from Section II.

(SECTION - D) GV T- G1-21

amortions

 $(2 \times 8 = 16)$

2. Write short answers to any EIGHT questions.

- A particle carrying a charge of 2e falls through a potential difference of 3.0 V.
 Calculate the energy acquired by it.
- ii. Define electron volt.
- iii. Define electric flux. Also write down its unit.
- iv. How can you identify that which plate of a capacitor is positively charged?
- v. Why does the picture on a T.V screen become distorted when a magnet is brought near the screen?
- vi. How can you use a magnetic field to separate isotopes of chemical element?
- vii. A plane conducting loop is located in a uniform magnetic field that is directed along the x-axis. For what orientation of the loop, is the flux a maximum? For what orientation is the flux a minimum?
- viii. If a charged particle moves in a straight line through some region of space, can you say that the magnetic field in the region is zero?
- ix. Does the induced emf in a circuit depend on the resistance of the circuit?

 Does the induced current depend on the resistance of the circuit?
- x. Does the induced emf always act to decrease the magnetic flux through a circuit?
- xi. Is it possible to change both the area of the loop and the magnetic field passing through the loop and still not have an induced emf in the loop?
- xii. Show that ε and $\frac{\Delta \varphi}{\Delta t}$ have the same units?

3. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- i. Is the filament resistance lower or higher in a 500 W, 220 V light bulb than in a 100 W, 220 V bulb.
- ii. Describe a circuit which will give a continuously varying potential.
- iii. What are thermistors? Write down their applications.
- iv. How many times per second will an incandescent lamp reach maximum brilliance when connected to a 50 Hz source?
- v. In a R-L circuit, will the current lag or lead the voltage? Illustrate your answer by a vector diagram.
- vi. A 100 μF capacitor is connected to an alternating voltage of 24 V and frequency 50 Hz. What will be the reactance of the capacitor?
- vii. Define stress and strain. What are their SI units?
- viii. What is meant by hysteresis loss? How is it used in the construction of transformer?
- ix. Define modulus of elasticity. Show that the units of modulus of elasticity and stress are the same.
- x. Why a photo diode is operated in reverse biased state?
- xi. Why is the base current in a transistor very small?
- xii. Define open loop gain and write down its relation.

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- i. Define pair production and write down its equation.
- ii. What happens to total radiation from a black body if the absolute temperature is doubled?
- iii. Which photon red, green or blue carries the most (a) Energy and (b) Momentum?
- iv. Write down two uses of Laser in Medicine.
- v. What do we mean when we say that the atom is excited?
- vi. What do we mean by the term critical mass?
- vii. Describe a brief account of interaction of various types of radiations with matter.
- viii. Define half-life of a radioactive element, write down its expression.
- ix. What is radioactivity?

1

(Turn Over)

(SECTION - II) 4UJ-41-21

	· · · · · · · · · · · · · · · · · · ·			
5. (a)	What is a wheatstone bridge? How is it used to determine an unknown resistance?			. 5
(b)	To the state of th			3
•	(mass = 10.0 g, charge = 20.0 μ C) by an identical object that is placed 10.0 cm			
	from the first. $(G=6.67 \times 10^{-11} \text{ Nm}^2 \text{ kg}^{-2})$			
6. (a)	Discuss the principle, construction and working of an alternating current generator.			5
	Also find expression for induced emf and current.			
(b)	Find the radius of an orbit of an electron moving at a rate of 2.0x10 ⁷ ms ⁻¹ in a uniform			3
i di	magnetic field 1.20 x 10 ⁻³ T.			Ο,
7. (a)	Explain R-L-C series resonance circuit. Draw its impedance diagram and also write do	wn	V 3	5
*	its properties.			
(b)	In a certain circuit, the transistor has a collector current of 10 mA and base current of		19.	3
	40 μA. What is the current gain of the transistor?			U,
8. (a)	What are radiation detectors? Describe the principle, construction and working of			5
	Wilson Cloud Chamber for detecting nuclear radiation.			5
(b)	The length of a steel wire is 1.0 m and its cross-sectional area is 0.03×10^{-4} m ² .		(a)	3
	Calculate the work done in stretching the wire when a force of 100 N is applied within		*	
	the elastic region. Young's modulus for steel is 3.0x10 ¹¹ Nm ⁻² .		(SE)	
9. (a)	What is LASER? Describe its principle and operation.			- 5
(b)	An electron is placed in a box about the size of an atom that is about 1.0×10^{-10} m.			2
	What is the velocity of the electron?			3
e E		315	421-3400	M
		717-	ナルス・ンサリリ	U

Roll PHY	No. of Candidate :	(II)	NTERMEDIATE P	ART-	II) 421 - (I)	Paper II	(Group – II)
Time	: 20 Minutes		OBJECTIVE			-	Marks: 17
91	You have four choices for earlil that circle in front of that circles will result in zero mapaper and leave others blank	each of t quest nark in	bjective type question a	as A, E	B, C and D. The	choice which y	ou think is correct,
1. 1.	Electric flux through a c	closed	surface depends upor	1			*
	(A) charge		medium		geometry	(D) als	ones and early
2.	Coulomb per volt is call	, ,		(0) geometry	(D) Cr	narge and medium
5	(A) farad	(B)	ampere	(C) joule	(D)	henry
3.	The substance having ne	egative	e temperature co-effic			(D)	nemy
	(A) silver		gold)/carbon	(D)	tungsten
4.	One Tesla is equal to						
	$(A) 1 N^{-1}Am$	100	1 NAm	/(C		(D)	1 NA ⁻¹ m ⁻¹
5.	Magnetic flux density at	a poi	nt due to current carry	ing co	il is determined	by	
_	(A) Ampere's law	(B)	Gauss's law	(C) Faraday's lay		Lenz's law
6.	Mutual induction has a p			ance o	f the		
	(A) radio choke		transformer	(C)	A.C generator	r (D)	D.C generator
7.	The self-induced emf is			emf.			· ·
0	(A) motional	100	constant	(C)	back	(D)	variable
8.	Power dissipated in a pur						
0	(A) large		small	(C)		(D)	zero
9.	At resonance frequency t			llel cir	cuit is		
10	(A) zero		infinite	(C)	minimum	(D) r	naximum
10.	Above the curie temperat	T					
11	(A) paramagnetic			(C)	ferromagnetic	(D) r	emain same
11.	A P-n junction cannot be						
12	(A) amplifier		rectifier	(C)	detector	(D) I	ED
12.	The width of central region (A) 10 ⁻⁴ m				*		
13.			10 ⁻⁶ m	(C)	10^{-3} m	(D) 1	0^{-9} m
15,	When platinum wire is he $(A) 500 ^{\circ}\text{C}$				0		
14.		, ,	900 °C	(C)	1100 °C	(D) 1	300 °C
14,	The value of plank's cons (A) $6.63 \times 10^{-34} \text{ JS}$						
15.			$6.63 \times 10^{-34} \text{JS}^{-1}$	(C)	$6.63 \times 10^{-34} \text{JS}^2$	(D) 6.	$63 \times 10^{-34} \text{JS}^{-2}$
13.	Helium – Neon Laser disc (A) 85%						
16.		(B)		(C)	30%	(D) 1	5%
10.	A pair of quark and antique						
17.	(A) meson		hadron	(C)	lepton	(D) b	aryon
1.7.	A device that shows the v						
	(A) G.M. counter	(B)	solid detector	(C)	scalar	(D) Wilson	Cloud Chamber

6

HYSICS

(INTERMEDIATE PART-II) 421

Paper II

(Group - II)

Time: 2:40 Hours

SUBJECTIVE

GUT-G2-21

Marks: 68

Note: Section I is compulsory. Attempt any three (3) questions from Section II.

(SECTION - I)

2. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- i. Define electron volt and prove that $1 \text{ ev} = 1.6 \times 10^{-19} \text{J}$.
- ii. Give a comparison between electric force and gravitational force.
- iii. Upon what factors electric flux does depend?
- iv. Do electrons tend to go to region of high potential or of low potential?
- v. State Ampere's law and write down its formula.
- vi. Define magnetic flux and flux density.
- vii. A plane conducting loop is located in a uniform magnetic field that is directed along the x-axis.

 For what orientation of the loop, is the flux a maximum? For what orientation is the flux a mininum?
- viii. Why does the picture on a TV screen become distorted, when a magnet is brought near the screen?
- ix. Does the induced emf in a circuit depend on the resistance of the circuit? Does the induced current depend on the resistance of the circuit.
- x. Does the induced emf always act to decrease the magnetic flux through a circuit?
- xi. Define motional emf and write down its formula.
- xii. Upon what factors self-inductance does depend?

3. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- i. Define the temperature co-efficient of resistance. Write down an expression for temperature co-efficient of resistance in terms of resistivity.
- ii. Do bends in a wire affect the electrical resistance? Explain.
- iii. Explain why the terminal potential difference of a battery decreases when the current drawn from it is increased?
- iv. Define impedance and write down its SI units.
- v. What is the main advantage of three phase A.C supply?
- vi. A circuit contains an iron-cored inductor, a switch and a D.C. source, arranged in series. The switch is Closed and after an interval reopened. Explain why a spark jumps across he switch contacts?
- vii. Draw a stress-strain curve for a metallic wire and mention the points representing proportional limit, elastic limit, UTS or nominal strength and fracture stress.
- viii. Define modulus of elasticity. Also discuss its three kinds.
- ix. What is meant by hysteresis loss? How is it used in the construction of a transformer?
- x. What is photovoltaic cell?
- xi. What does it mean when we say that output of an amplifier is 180° out of phase with its input?
- xii. What is the net charge on an n-type or a p-type substance?

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- i. What advantages an electron microscope has over an optical microscope?
- ii. Write down some important results of photoelectric effect.
- iii. If the following particles have the same energy, which has the shortest wavelength? Electron, alpha Particle, neutron, proton.
- iv. What do we mean when we say that atom is excited?
- v. Explain de-Broglie's interpretation of Bohr's orbits.
- vi. Why are heavy nuclei unstable?
- vii. What factors make a fusion reaction difficult to achieve?
- viii. Write down the name of basic forces of nature.
- ix. Differentiate between mass defect and binding energy.

4

(Turn Over)

(SECTION - II) GUJ-42-21

5. (a)	State Gauss's law. Find electric field intensity between two oppositely charged parallel plates.			
(b)	A platinum wire has resistance of 10Ω at 0° C and 20Ω at 273° C. Find the value of temperature	3		
	co-efficient of resistance of platinum.	*		
6. (a)	State Faraday's law of electromagnetic induction and also derive the relation for induced emf.	5		
(b)	A solenoid 15.0 cm long has 300 turns of wire. A current of 5.0 A, flows through it. What is the			
	magnitude of magnetic field inside the solenoid.			
7. (a)	How can we use a transistor as an amplifier?	5		
(b)	A 10 mH, 20 Ω coil is connected across 240 V and $\frac{180}{\pi}$ Hz source. How much power does	3		
	it dissipate?			
8. (a)	Differentiate between insulators, conductors and semi-conductors on the basis of energy band theory.	5		
	Find the mass defect and binding energy of the deuteron nucleus. The experimental mass	3		
. ,	of deuteron is 3.3435×10^{-27} kg, and that of proton and neutron 1.6726×10^{-27} kg and	10		
	1.6749×10^{-27} kg respectively.			
9. (a)	What is photoelectric effect? What is the effect of frequency of light on photoelectric current?	5		
. 1.1	Derive the Einstein's photoelectric equation.			
(b)	The state of the s			
` '	Electrons were slowed in a target, what will be the minimum wavelength of x-rays produced?			
191				

316-421-34000